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This presentation

• Triples and a Graph database (2 minutes, I promise)

• AllegroGraph features

• Loading, indexing and querying: how did we do

• New numbers, 3.1 vs 3.2 and AllegroGraph vs (O)ther

• The secret sauce



Graphs, triples, triple-store?

createTripleStore(“seminar.db" )

addTriple (Person1 first-name Steve)

addTriple (Person1 isa Organizer)

addTriple (Person1 age 52)

addTriple (Person2 first-name Jans)

addTriple (Person2 isa Psychologist)

addTriple (Person2 age 50)

addTriple (Person3 first-name Craig)

addTriple (Person3 isa SalesPerson)

addTriple (Person3 age 32)

addTriple (Person1 colleague-of Person2)

addTriple (Person1 colleague-of Person3)

addTriple (Person1 likes Pizza)





addTriple ( Person3 neighbor-of Person1)

addTriple ( Person3 neighbor-of Person2)





And now you can query in Prolog

or Sparql

(select (?xname ?yname)

(q ?x colleague-of ?y)

(q ?y neighbor-of ?x)

(q ?x first-name ?xname)

(q ?y first-name ?yname))

SELECT ?xname ?yname WHERE { 

?x ex:colleague-of ?y . 

?y ex:neighbor-of ?x .

?x ex:first-name ?xname .

?y ex:first-name ?yname . }



Or reason

addTriple ( first-name domain Person)

Every subject that has a predicate ‘first-name’

must be of type Person.













AllegroGraph [1]

• Scalable and persistent Triple Store

– Loads a 1.1 Billion triples in 20 hours on a single CPU and 8 hours 
on a 4 processor AMD machine (in federation)

• Federated

– Create an abstract store that is a collection of other triple stores. 
Prolog and SPARQL and Reasoning work transparently against 
abstract store 

• Compliant with standards 

– RDF, RDFS, OWL, SPARQL, Named Graphs, ISO Prolog, OWL-lite 
reasoning

• RDFS++ reasoner:

– All of RDFS, inverseOf, sameAs, hasValue, transitiveProperty

• Full text indexing

• Java (Jena/Sesame) and Python interface.



AllegroGraph [2]

• Relational database efficiency for range queries

– We support most xml schema types (dates, times, 

longitudes, latitudes, durations, telephone numbers, etc)

• Spatial database efficiency for geospatial primitives

– Find elements in bounding boxes as fast as in spatial 

databases

• Temporal reasoning

– Reasoning about times and intervals (Allen Logic)

• Social Network Analytics library 

– Find actor degrees and centrality, cliques, group centrality 

and cohesiveness



So how were we doing

• We were very fast at loading and indexing

• But queries on a reasoning store were slower then we wanted



Datasets we work with

• Science Commons (350,000,000 triples….)

• Linked Data (1,400,000,000 triples)

• LUBM8000 (1,200,000,000 triples)





Find the socio-economic indicators 

for the place where Obama was born



And then LUBM
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Our LUBM Benchmarks.. 

• Lubm 50 => 7,000,000 triples

• Lubm 8000 => 1,100,000,000 triples

• We use a 4 processor, 1.8 GHz, 16 Gig machine with 64 bit 

Fedora Core.

• We compare 3.1 against 3.2

• And (O)ther against 3.2
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AllegroGraph LUBM(50) Comparison
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LUBM(50) large query zeroed
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LUBM(50) with medium queries zeroed
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So does this work for huge 

triplestores?

LUBM(8000) Total query time
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LUBM(8000) queries
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LUBM(8000) with long queries zeroed
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So what is the big deal? [1]

• AllegroGraph does not Materialize

• Typical triplestore: 

– Load & Index

– Materialize: Do type inferences, some predicate normalizations

– Index again

• With 3.2

– Much more dynamic, add a few triples, delete or change an ontology

– And back in the query business within a few minutes for a billion 

triples.



So what is the big deal? [2]
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So what is the big deal? [1]

• AllegroGraph does not Materialize

• Typical triplestore: 

– Load & Index

– Materialize: Do type inferences, some predicate normalizations

– Index again

• With 3.2

– Much more dynamic, add a few triples, delete or change an ontology

– And back in the query business within a few minutes for a billion 

triples.



So how do we do this?



LUBM Query 2



Parsed



Rewritten in Prolog



A statistics based plan with some 

reasoning simplifications



Internally executed as



Well, to be honest, 
really compiled down 
to machine 
instructions



Concluding with some reality

• Expect 3.2 in a few days. Call if you want prelease now.

• The prolog query optimizer will work for you

• The Sparql will still run on our old reasoner, expect the faster 

Sparql on our next release



Thank you


