
Optimizing Sparql and Prolog

for reasoning 

on large scale 

diverse ontologies

Jans Aasman, Ph.D.

CEO Franz Inc

Ja@Franz.com



This presentation

• Triples and a Graph database (2 minutes, I promise)

• AllegroGraph features

• Loading, indexing and querying: how did we do

• New numbers, 3.1 vs 3.2 and AllegroGraph vs (O)ther

• The secret sauce



Graphs, triples, triple-store?

createTripleStore(“seminar.db" )

addTriple (Person1 first-name Steve)

addTriple (Person1 isa Organizer)

addTriple (Person1 age 52)

addTriple (Person2 first-name Jans)

addTriple (Person2 isa Psychologist)

addTriple (Person2 age 50)

addTriple (Person3 first-name Craig)

addTriple (Person3 isa SalesPerson)

addTriple (Person3 age 32)

addTriple (Person1 colleague-of Person2)

addTriple (Person1 colleague-of Person3)

addTriple (Person1 likes Pizza)





addTriple ( Person3 neighbor-of Person1)

addTriple ( Person3 neighbor-of Person2)





And now you can query in Prolog

or Sparql

(select (?xname ?yname)

(q ?x colleague-of ?y)

(q ?y neighbor-of ?x)

(q ?x first-name ?xname)

(q ?y first-name ?yname))

SELECT ?xname ?yname WHERE { 

?x ex:colleague-of ?y . 

?y ex:neighbor-of ?x .

?x ex:first-name ?xname .

?y ex:first-name ?yname . }



Or reason

addTriple ( first-name domain Person)

Every subject that has a predicate ‘first-name’

must be of type Person.













AllegroGraph [1]

• Scalable and persistent Triple Store

– Loads a 1.1 Billion triples in 20 hours on a single CPU and 8 hours 
on a 4 processor AMD machine (in federation)

• Federated

– Create an abstract store that is a collection of other triple stores. 
Prolog and SPARQL and Reasoning work transparently against 
abstract store 

• Compliant with standards 

– RDF, RDFS, OWL, SPARQL, Named Graphs, ISO Prolog, OWL-lite 
reasoning

• RDFS++ reasoner:

– All of RDFS, inverseOf, sameAs, hasValue, transitiveProperty

• Full text indexing

• Java (Jena/Sesame) and Python interface.



AllegroGraph [2]

• Relational database efficiency for range queries

– We support most xml schema types (dates, times, 

longitudes, latitudes, durations, telephone numbers, etc)

• Spatial database efficiency for geospatial primitives

– Find elements in bounding boxes as fast as in spatial 

databases

• Temporal reasoning

– Reasoning about times and intervals (Allen Logic)

• Social Network Analytics library 

– Find actor degrees and centrality, cliques, group centrality 

and cohesiveness



So how were we doing

• We were very fast at loading and indexing

• But queries on a reasoning store were slower then we wanted



Datasets we work with

• Science Commons (350,000,000 triples….)

• Linked Data (1,400,000,000 triples)

• LUBM8000 (1,200,000,000 triples)





Find the socio-economic indicators 

for the place where Obama was born



And then LUBM



Employee

Administrative StaffFaculty

Professor Clerical Staff

Systems Staff

Associative Prof

Person

UnderGraduate St

Assistant Prof

Lecturer

Full Professor

Student

PostDoc

Grad Student

takesCourse

Chair

Grad Course

headof Department

restriction

restriction

collection

Director

worksfor

Organization

restriction

collection

Visiting  Prof

Research Assistant

worksfor
Research group

restriction
collection

A small part of the class hierarchy of LUBM



Advisor

Affilated org

Affilliateof

Age

degreeFrom

DoctDegreeFrom

emailAddress

Person

Professor

University

Organization

hasAlumnus

A small part of the property 

descriptions of LUBM

Domain

Range

InverseOf

SubpropertyOf



Our LUBM Benchmarks.. 

• Lubm 50 => 7,000,000 triples

• Lubm 8000 => 1,100,000,000 triples

• We use a 4 processor, 1.8 GHz, 16 Gig machine with 64 bit 

Fedora Core.

• We compare 3.1 against 3.2

• And (O)ther against 3.2



LuBM(50) Total query time

0

50

100

150

200

250

300

AllegroGraph 3.1 AllegroGraph 3.2

S
e

c
o

n
d

s

Series1



AllegroGraph LUBM(50) Comparison

0

50

100

150

200

250

300

1 3 5 7 9 11 13

Queries

S
e

c
o

n
d

s

AllegroGraph 3.1

AllegroGraph 3.2



LUBM(50) large query zeroed

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Queries

S
e

c
o

n
d

s

AllegroGraph 3.1

AllegroGraph 3.2



LUBM(50) with medium queries zeroed

0

0.02

0.04

0.06

0.08

0.1

1 3 5 7 9 11 13

Queries

S
e

c
o

n
d

s

AllegroGraph 3.1

AllegroGraph 3.2



So does this work for huge 

triplestores?

LUBM(8000) Total query time

0

200

400

600

800

1000

1200

AllegroGraph 3.2 Other

Total 

S
e

c
o

n
d

s

Series1



LUBM(8000) queries

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Query Number

S
e

c
o

n
d

s

AllegroGraph 3.2

Other



LUBM(8000) with long queries zeroed

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Queries

S
e

c
o

n
d

s

AllegroGraph 3.2

Other



So what is the big deal? [1]

• AllegroGraph does not Materialize

• Typical triplestore: 

– Load & Index

– Materialize: Do type inferences, some predicate normalizations

– Index again

• With 3.2

– Much more dynamic, add a few triples, delete or change an ontology

– And back in the query business within a few minutes for a billion 

triples.



So what is the big deal? [2]

0

50000

100000

150000

200000

Seconds

Other / Static AllegroGraph

3.2

AllegroGraph

3.2 Federated

LUBM(8000) Total Time

Total Query Time

Type Materializations

Loading and Indexing



So what is the big deal? [1]

• AllegroGraph does not Materialize

• Typical triplestore: 

– Load & Index

– Materialize: Do type inferences, some predicate normalizations

– Index again

• With 3.2

– Much more dynamic, add a few triples, delete or change an ontology

– And back in the query business within a few minutes for a billion 

triples.



So how do we do this?



LUBM Query 2



Parsed



Rewritten in Prolog



A statistics based plan with some 

reasoning simplifications



Internally executed as



Well, to be honest, 
really compiled down 
to machine 
instructions



Concluding with some reality

• Expect 3.2 in a few days. Call if you want prelease now.

• The prolog query optimizer will work for you

• The Sparql will still run on our old reasoner, expect the faster 

Sparql on our next release



Thank you


