
GeoSpatial capabilities and

Moving Objects

with RDF and AllegroGraph

Jans Aasman, Ph.D.

CEO Franz Inc

Ja@Franz.com

Trends in main stream IT

• Gartner group‘s 2008 list of the Top 10 Disruptive Technologies that will

effect IT in the next five years

– Multi core and hybrid processors

– Virtualisation and fabric computing

– Social networks and social software

– Cloud computing and cloud/Web platforms

– Web mashups

– User Interface

– Ubiquitous computing

– Contextual computing

– Augmented reality

– Semantics

This talk

• Why RDF needs Geospatial capabilities, why the Geospatial community
needs RDF.

• The basics of an RDF triple store

• Events everywhere

• One query language to combine

– Geospatial, Temporal, Social Network Analysis

• Example: geospatial in AllegroGraph

• Example: a river network in GeoBC

• A future direction: moving objects

• Steve Haflich:

– Research Topics in 3D indexing,

– Query types on moving objects

Why the RDF community needs

GeoTemporal reasoning capabilities

• Many of the Semantic Web projects are about

– People and their relationships

– Events that happen in space and time

• Reasoning about time and space needs to be an integral part
of Semantic Web.

• The basic thing a geo interested web developer wants is

– Find the distance between two places

– Find everything with a particular description within x yards
of place p

Why the geospatial community

needs RDF

• RDF is about MetaData

• MetaData is usually very unstructured and sparse

• Objects that you describe are usually part of an object

hierarchy

• You need ontologies to describe geospatial objects..

– See how the national map project uses ontologies to solve

the metadata problem

Graphs, triples, triple-store?

createTripleStore(“seminar.db")

addTriple (Person1 first-name Steve)

addTriple (Person1 isa Organizer)

addTriple (Person1 age 52)

addTriple (Person2 first-name Jans)

addTriple (Person2 isa Psychologist)

addTriple (Person2 age 50)

addTriple (Person3 first-name Craig)

addTriple (Person3 isa SalesPerson)

addTriple (Person3 age 32)

addTriple (Person1 colleague-of Person2)

addTriple (Person1 colleague-of Person3)

addTriple (Person1 likes Pizza)

addTriple (Person3 neighbour-of Person1)

addTriple (Person3 neighbour-of Person2)

And deal with events

addTriple (Event100 type Meeting)

addTriple (Event100 actor Person3)

addTriple (Event100 actor Person2)

addTriple (Event100 start 2008-12-12T12:12)

addTriple (Event100 end 2008-12-12T12:45)

addTriple (Event100 is-at -122.4325,37.12223)

Find a meetings that happened in July within 5
miles of Berkeley that was attended by the
most important person in Jans’ friends and
friends of friends.

(select (?x)
(ego-group !person:jans knows ?group 2)
(actor-centrality-members ?group knows ?x ?num)
(q ?event !fr:actor ?x)
(qs ?event !rdf:type !fr:Meeting)
(interval-during ?event “2009-07-01” “2009-07-25”)
(geo-box-around !geoname:Berkeley ?event 5 miles)
!)

Integrated in select language.

Geospatial Reasoning

GeoSpatial

• Make the following super efficient

– Where did something happen?

– How far was event1 from event2?

– Find all the events that occurred
in a bounding box or radius of
M miles?

– Do these two shapes overlap?

– Find all the objects in the
intersection of two shapes

• On a very large scale

– when things don’t fit in memory

– millions of events and polygons

Sample Geospatial Primitives

(geo-bounding-box ?x +minlat +maxlat +minlon +maxlon)

(geo-box-around +x ?y +miles)

(geo-distance +x +y ?dist)

(geo-radius-around +x ?y +miles)

(polygon-in ?p1 ?p2)

(polygon-touch ?p1 ?p2)

(polygon-overlap ?p1 ?p2)

Etc.

Now with SPARQL Support [1]

PREFIX fr:
<http://franz.com/ns/allegrograph/3.0/geospatial/>

PREFIX geo: <http://www.geonames.org/ontology#>
PREFIX country: <http://www.geonames.org/Countries#>

SELECT ?placename ?population WHERE {
GEO OBJECT
HAVERSINE (?londonpos, 50 MILES) {
?place fr:pos ?pos ;

geo:name ?placename ;
geo:population ?population ;
geo:countryCode ?cc

}
WHERE {
Select London, UK.
?london geo:name 'London' ;

geo:countryCode 'GB' ;
fr:pos ?londonpos .

}
FILTER (?population > 25000)

Benchmarking on

GeoNames.rdf

Using GeoNames

• coordinates for 6,445,201 places

• 109,568,417 RDF triples

AllegroGraph requires only 95 msec real time to return the 502

entries within a 3 mile radius of the Franz Inc offices.

Example 1: dealing with a river

network using KML and Google Earth

• Working with data from GeoBC

The graph in a River

Network

Regular data with a

graph

S1 type stream-segment

S1 upstream S2

S1 upstream S3

S1 left-drainage D1

S1 right-drainage D2

S1 isAt (-121.2, 12.1)

Given the polluted segment

S1 find all the

upstream segments within

50 miles of City1200

Given the polluted

drainage D1 find all

the schools in the rectangle

<x1, y1, x2, y2> that might

be influenced

Queries

• Graph search

– find all upstreams or downstreams of a segment

• Graph search + bounding box

– Given the polluted drainage D1 find all the schools in the

rectangle <x1, y1, x2, y2> that might be influenced

Moving Objects

• Track data for

animals in biodiversity

projects

• Track ships near the

coast of Africa

• Fleets of trucks and

swarms of airplanes

• Track data for soldiers

• New Telco Service:

– Loopt and friends

Loopt

Tagged birds

The challenge

• Track a million objects

• At a resolution of once per

minute or a change in x meters

• In real time

– Use geotemporal (3D)

indexing techniques from

the game industry

– Do complex event handling

for current situation

• And historically

– Use geotemporal (3D)

indexing

• And do predictions

Questions we need to answer

• Do we have 5 soldiers that have been active less than 8 hours

with training x and equipment y within a mile distance of each

other

• Find another truck that can pick up package X at location Y so

that I can pick up package A at location B so that we both will

arrive at P before time T.

So far implemented – real time

• An object model for representing active objects

• In memory 3D indexing using a grid approach

• Simple rules to trigger actions based on in-memory objects

• Simple rules to aggregate real time data and store it in the

triple store.

So far implemented - historic

• 2D indexing

– (in the regular Agraph 3.2)

• 3D indexing

– (in AG 4.0 or close thereafter)

Happiness is sorting things in

n log n time.

“Happiness is finding things that

are linear.”

• Computer main memory and disk are linearly addressable

vectors.

• It is well known that a vector of length n can be

– sorted in O(n log n) time.

– searched in O(log n) time.

• AllegroGraph is designed to exploit machine speed, despite

scaling requirements, by keeping everything linear.

• Maintains multiple sorted indexes (e.g. SPOG, POSG, GOSP).

• By selecting the proper index, triples variously related to

others can be retrieved from a local region of that index.

Happiness is finding things

linearly.

• If I want to retrieve everything about

<http://franz.com/employees#Jans>, all triples with this

Subject are sorted together in the SPOG index.

• All triples with Jans as the Object are together in the OSPG

index.

• All triples with a particular Predicate e.g.

<http://franz.com/employees#isSupervisorOf> are grouped

together, sorted secondarily on Object, in the POSG index.

• And so on...

But 2-D and 3-D Aren't Linear!

• Age, date and/or time, currency, phone numbers, stock

prices, license-plate numbers, and barometric pressure are all

linearly orderable.

• Cartesian and spherical (e.g. geospatial) coordinates in two or

higher dimensions are not immediately orderable and

sortable. How to integrate these into the AllegroGraph

model?

How to find linear happiness in

higher dimensions???
• The important problem is proximity search.

• We want to optimize speed retrieving all triples with

coordinates in a certain locality.

The Wrong Way

• Data in two dimensions could be sorted on the two separate

dimensions in the obvious way, either first on Y/latitude or

X/longitude, or the reverse. (*)

• But this causes search time over a locality to increase linearly

with the the size of the data set.

(*) This is a gross misfeature in some RDF schema for geospatial data.

Latitude and longitude should not be carried by separate triples:

<http://ex.com#HQ> <geo:isAtLat> "37.45"^^<geo:latitude> .

<http://ex.com#HQ> <geo:isAtLon> "-123.27"^^<geo:longitude> .

ISO6709, for example, would be better:

<http://ex.com#HQ> <geo:isAt> "+37.45-123.27"^^<geo:ISO6709> .

Sorting Lat and Lon Separately

How?

• R-trees and numerous other schemes support very efficient

search of localities.

• But if all the data won't fit in memory, performance can be

unpredictable.

• And there is no obviously efficient way to reconcile 2-D and

higher R-trees with the AllegroGraph linear indexing.

• But suppose we knew a little more about how we will use our

data, specifically:

• The approximate size of typical regions to be searched.

We'd Rather Search Just the Locality

• But how?

Eureka! Think In Strips

If Strip Width is the Same As

Search Radius

• Need search only short linear regions of two strips.

If Search Radius is Somewhat

Smaller Than Strip Width

• Need search only short linear regions of one or two strips.

If Search Radius is Somewhat

Larger Than Strip Width

• Need search short linear regions of a few more strips.

If Search Radius is Much Larger

Than Strip Width

• Need search longer linear regions of even more strips.

Summary of 2-D

• It is inconvenient to need to specify strip width in advance.

• But performance is still reasonable even with an order of

magnitude error.

• In addition, if extremely different strip sizes are needed, the

data can be stored twice with different strip sizes.

• The two coordinates can be anything:

– pressure and temperature

– distance and time.

• This last possibility suggests extension to 3-D and beyond,

particularly MOBs in latitude/longitude/time.

Eureka In 3D! Think In Prisms

Extending to 3-D and MOBs

• Strip representation can be extended to 3-D and beyond using

prisms.

• Again, the dimensions can be anything:

– [x,y,z], [lat,lon,alt], [lat,lon,time], [lat,lon,alt,time]

• [lat,lon,time] is very important, corresponding to Moving

Objects on the Earth's Surface.

Layout of Latitude and Longitude

• 3 and higher dimensions can be encoded and linearized

similarly.

• Map each ordinate into a nonnegative integer, then split the

first n-1 coords into strip and modulus.

• Number of strips is the ordinate range divided by strip width.

• Modulus is remainder is ordinate divided by number of strips.

• The 80 bits can be allocated according to resolution needs.

• But the available resolution is less for higher dimensions.

[1] What is within a given bound from a

given lat/lon/time?

[2] Detect When Two Given MOBs Were

Within a Given Distance

Requires

traversing

the entire

paths of the

two given

MOBs.

[3] Given a MOB, detect all MOBs ever

within a given distance.

[4] Find all occurrences of two MOBs

within a certain distance.

Don't know

which MOB

is important,

so need to

traverse and

compare

each pair of

MODs, thus

scanning the

entire MOB

component

of the

database.

[5] Detect Potential MOB Cliques

Both

expensive

and

difficult.

There is no

a priori

knowledge

what we

are looking

for...

And

• To summarize

– You can do 2D geospatial and temporal now in AG32

– Expect 3D indexing in 4.0 (or close thereafter)

– We are looking to help people that want to do projects

with moving objects

– We are looking for 4.0 testers

Thanks

