
19/16/2010

Allegro CL Certification Program

Lisp Programming Series Level I

Presented by

29/16/2010

About David Margolies

• Manager, Documentation, Franz Inc

• Been working with Lisp since 1984

• dm@franz.com

39/16/2010

About Franz Inc.

• Founded in 1984

• Lisp & Lisp Tools/Applications

• http://www.franz.com

• For general information: info@franz.com

• For technical support: support@franz.com

49/16/2010

Format of the Course

• One 2-hour presentation each week

• Lecture notes and homework available,

online at http://www.franz.com/lab/

• One-on-one help via email at

training@franz.com

59/16/2010

Getting Allegro Common Lisp

• This class is based on Allegro CL 8.2.

• Trial version should be sufficient for this
module

– Download free from http://www.franz.com/

• I will be using Allegro CL on Windows

• You can use Allegro CL on UNIX, but the
development environment is different, and I
won't be showing how to use it.

69/16/2010

Getting Documentation

• Allegro Common Lisp:

– http://www.franz.com/support/documentation/8.2

• ANSI Common Lisp specification

– http://www.franz.com/support/documentation/8.2

/ansicl/ansicl.htm

• Can’t remember the name

– But it contains the word “bit”

– Permuted index under ‘bit’

79/16/2010

Documentation in the IDE

• Help: Help on Selected Symbol

• Help:ANSI Common Lisp

• Help:Allegro CL Documentation

• Help:Symbol Index

• Help: Tree of Knowledge

89/16/2010

Allegro CL Certification Program

Lisp Programming Series Level I

Session 1.1.1

Overview of Common Lisp

99/16/2010

History of Lisp

• Born in 1958

• John McCarthy

• 2nd oldest language still in active use

• Still on the leading edge

109/16/2010

History of Lisp, cont’d

• Earliest widespread dialect called Lisp 1.5

• Bloomed into serious development

environments but fragmented

– Interlisp, MacLisp

• Standardization effort led to Common Lisp,

CLtL1, CLtL2, CLOS

• Common Lisp has itself evolved, most

recently into an ANSI standard

119/16/2010

Lists

• A list is an ordered collection of objects in a

particular format

• The print representation of a list, that is what

a printed list looks like, is zero or more

elements enclosed by parentheses

• (17 red “green” 2/3 blue) is a list

• lisp source code consists of lists

• lisp data may be collected in lists

129/16/2010

Starting Allegro CL with the IDE

• Start the lisp from a submenu of the Allegro

CL 8.2 item on the Start | Programs menu

• Enter lisp forms (function calls, numbers, ...)

to the read-eval-print loop at a prompt in the

Debug Window

• You can call any function which is already in

the lisp (whether there at lisp startup or added

since)

139/16/2010

Count-digits-of-factorial

(defun count-digits-of-factorial (positive-integer-arg)

(if (or (not (integerp positive-integer-arg))

(< positive-integer-arg 0))

(error "argument is not a non-negative integer")

(let* ((fact-of-arg (factorial

positive-integer-arg))

(string-of-factorial (write-to-string

fact-of-arg))

(count-list (compute-list-of-occurrences

string-of-factorial)))

(format t

"~%In factorial of ~d, ~

the frequency of digits is as shown:"

positive-integer-arg)

(print-data count-list))))

149/16/2010

factorial

(defun factorial (n)

(cond ((or (not (integerp n))

(< n 0))

(error

"argument is not a non-negative integer"))

(t (fact n))))

;;; assumes a non-negative integer

;;; computes factorial of its argument

(defun fact (arg)

(if (zerop arg)

1

(* arg (fact (1- arg))))) ;recurse

159/16/2010

compute-list-of-occurrences
#|

;;; compute the frequency of all decimal digits

(defun compute-list-of-occurrences (string-of-digits)

(let ((list-of-occurrences (make-list 10)))

(dotimes (i 10 list-of-occurrences)

(setf (nth i list-of-occurrences)

(count (coerce (write-to-string i) 'character)

string-of-digits)))))

|#

(defun compute-list-of-occurrences (string-of-digits)

(loop for i from 0 to 9

collect

(count (coerce (write-to-string i) 'character)

string-of-digits)))

169/16/2010

print-data

;;; computes, generates and displays the table

(defun print-data (list-of-counts)

(format

t

"~% digit frequency percent of total")

(let ((total (apply #'+ list-of-counts))

(field-width

(length

(write-to-string ;calculate field width

(reduce #'max list-of-counts)))))

;;generate and display the table

(dotimes (i 10)

(let ((count (nth i list-of-counts)))

(format t "~% ~d ~vd ~5,2f%"

i field-width count

(* 100 (/ count total)))))))

179/16/2010

Results
cg-user(12): (fact 100)

933262154439441526816992388562667004907159682643816214685929638952175999932299156089

41463976156518286253697920827223758251185210916864000000000000000000000000

cg-user(13): (count-digits-of-factorial 100)

In factorial of 100, the frequency of digits is as shown:

digit frequency percent of total

0 30 18.99%

1 15 9.49%

2 19 12.03%

3 10 6.33%

4 10 6.33%

5 14 8.86%

6 19 12.03%

7 7 4.43%

8 14 8.86%

9 20 12.66%

nil

189/16/2010

Results 2

cg-user(14): (count-digits-of-factorial 1000)

In factorial of 1000, the frequency of digits is as shown:

digit frequency percent of total

0 472 18.38%

1 239 9.31%

2 248 9.66%

3 216 8.41%

4 229 8.92%

5 213 8.29%

6 231 9.00%

7 217 8.45%

8 257 10.01%

9 246 9.58%

nil

199/16/2010

Adding code to a lisp session

• You can enter definitions directly at the

prompt or, preferably, write your definitions

in an editor (from which they can be saved)

and load them into that or any other lisp

session

• Entering a definition at the lisp prompt adds

that definition to that lisp session

209/16/2010

Loading a file into a lisp session

• To load a file into Common Lisp

– (load "myfile.cl") in any Common Lisp

– :ld myfile.cl in any Allegro CL

– File | Load in the Allegro CL IDE

219/16/2010

Loading a function into a lisp

session

• To load a single definition from the IDE

editor into Allegro CL on Windows

– put the mouse cursor on the open parenthesis of

the definition

– enter the <enter> key of the numeric keypad

229/16/2010

Compiling a lisp file

• The Common Lisp compiler is used to

compile Common Lisp source files

– The result of compiling a file of Common Lisp

code is another file which

– typically loads and runs faster than the source file

from which it was made

– isn't in a format which anyone can read

239/16/2010

Compiling and loading a lisp file

– (compile-file "myfile.cl")

– :cf myfile.cl

• For the file to affect the lisp session in which

it was compiled or any other lisp session, the

compiled file has to be loaded into the

session in which you want access to the

definitions in the file.

– (load "myfile.fasl")

– :ld myfile.fasl

249/16/2010

Compiling and loading a lisp file

cont’d

• There are compile and load items in the File

menu of the Allegro CL IDE

259/16/2010

Compiling and loading a lisp file

• To both compile a source file and load the

newly created compiled file:

– :cl myfile.cl

– File | Compile and Load from the Allegro CL

IDE menu-bar

– select the loaded truck icon of the Allegro CL

IDE menu-bar

•

269/16/2010

Dynamic Programming Language

• ‘Dynamic’ means you can add or redefine functions

while the program is running

• Change a function, compile it, load it, and test it

without restarting the application

• Very fast edit-debug cycle

• Frequent development strategy: use stand-in

functions for something complicated that will be

needed eventually

– stand-in goes into debugger

– stand-in returns dummy values

279/16/2010

Lisp Issues

• Weird syntax: (+ a b) instead of a + b takes

some getting used to but

– (+ a (/ b c)) less ambiguous than a + b / c

– Parsing lisp programs is trivially easy due to the

prefix notation

• Garbage collection

– If you notice it at all, something is probably

wrong

289/16/2010

Lisp Syntax

• Prefix notation

– Function name followed by zero or more args

• Delimited by parentheses

• (+ 2 3 4)

• (* (- 7 1) (- 4 2) 2)

• (print “Hello, world”)

299/16/2010

Examples of Lisp Syntax

• (solve-polynomial 1 5 7 9)

• (if (eq weather 'cold)

 (turn-on-heat)

 (turn-on-ac))

• (dotimes (i 5)

 (print i))

309/16/2010

Lists are used to define and call

functions

• To define a function use the operator defun

• Specify function name, list of argument

names, then body of function

(defun my-square (x)

(* x x))

(my-square 7) ==> 49

319/16/2010

Lisp includes a large and extensible number

of types of objects

329/16/2010

Lisp Data types

• Data Types found in Other Languages

– Numbers: 123, 1.45, -10e2, 3/5, #C(2 3)

– Strings: "This is a fine day"

• Data types more specific to Lisp

– Symbols: HELLO, FOO, START

– Lists: (a (b c) d)

– Characters: #\A, #\z, #\space

339/16/2010

Program Data is Freed

Automatically

 The job of the garbage collector is

- to notice objects that are not referenced

anywhere

- to make the space those objects occupy

available for reuse

349/16/2010

Evaluation

• When a lisp program is “run”, the call to run

the program is evaluated. That is, it is

processed by a Common Lisp function called

eval.

359/16/2010

Evaluation cont’d

• There are three categories of objects which

can be evaluated.

– Symbol

– a list of which the first element is the name of an

operator (a compound form)

– a self-evaluating object

369/16/2010

Self-Evaluating Objects

• Numbers

• Strings

• ...

379/16/2010

Evaluation of a list

If the expression is a list of which the first

element names a function, then:

• Each of the elements in the list after the

function name is evaluated in the order in

which they appear in the list

• The result of each such evaluation is passed

to the function as an argument.

389/16/2010

Evaluation of a list cont’d

• (+ 2 3 4)
• the symbol + names a function

• (+ 2 3 4) is a function call

• 2, 3 and 4 are passed as arguments to the function

• Evaluating a form always returns a value

399/16/2010

Evaluation of a function call

• If the first element of a list to be evaluated is

a symbol which names a function, each of the

list elements after the function name is

evaluated to provide an argument for the

function named

• (* (- 7 1) (- 4 2) 2)

– returns 24

409/16/2010

Try Out the Evaluator

USER(2): (+ 2 3 4)

9

USER(3): (* (- 7 1) (- 4 2) 2)

24

• Type expression to the Lisp prompt and hit

Enter

• Lisp reads what you typed, evaluates it, and

prints the return value

419/16/2010

A Symbol is a Lisp Object

• That may name a variable, in which case it

has an associated value.

• That may (or may also) name a function

• has some other information associated with it

including a property list

429/16/2010

print representation of a symbol

• consists of a number of consecutively

displayed characters, usually alpha-numeric

or hyphens

• in an ANSI standard Common Lisp, the

alphabetic characters are usually upper-case

439/16/2010

ANSI Lisp is Case-Insensitive

• When entered from the keyboard or read
from a file, the following are equivalent and
are all read as references to the symbol RED

– red

– Red

– RED

• By convention, most lisp code is lower case

• Allegro Common Lisp lets you create a case-
sensitive lisp

449/16/2010

Evaluating a Symbol

When a symbol is evaluated the binding (or

value) of the variable named by the symbol is

returned.

(+ number-of-apples number-of-bananas)

(+ pi pi)

(+ pi internal-time-units-per-second)

459/16/2010

t and nil

• There are distinguished symbols t and nil

• Variables named by the symbols t and nil

ALWAYS evaluate to themselves

– t evaluates to t

– nil evaluates to nil

• You cannot set the value of t or nil to any

other value so (setq t 100) signals an error

469/16/2010

Quote

When the first character of anything to be

evaluated is ’, the value returned is the object

which followed the ’ .

• a is not the same as ’a

• (a b c) is not the same as ’(a b c)

479/16/2010

Using Symbols

• (if (eq today 'Monday) …)

• (list ‘July (+ 3 1) this-year)

• (find 'meat ingredients)

489/16/2010

symbol and variable creation
• a symbol is created when the lisp reader

reads an appropriate sequence of characters

that don’t correspond to the name of some

symbol already in the lisp or when a

compiled file that references a new symbol is

loaded

• a variable is created with

– defvar, defparameter, defconstant

– let, let* or some other means of creating local

bindings

499/16/2010

special variable creation

• defvar variable-name [initial-value]

• defparameter variable-name initial-value

(defvar *alpha*)

(defvar *beta* (* 2 3))

(defparameter *gamma*

(* 2 7))

509/16/2010

special variable creation 2

CL-USER(4): *alpha*

Error: Attempt to take the value of the

unbound variable `*ALPHA*'.

[condition type: UNBOUND-VARIABLE]

[1] CL-USER(5): :pop

CL-USER(6): *beta*

6

CL-USER(7): *gamma*

14

519/16/2010

special variable creation 3

CL-USER(8): (defvar *alpha* 3)

ALPHA

CL-USER(9): (defvar *beta* 5)

BETA

CL-USER(10): (defparameter *gamma* 7)

GAMMA

CL-USER(11): *alpha*

3

CL-USER(12): *beta*

6

CL-USER(13): *gamma*

7

529/16/2010

Local variable creation

most local variables are created and bound with

let or let*

(let* ((x 0)

(y (* 2 3))

z)

(print z)

(format t "~%(~a,~a)" x y))

NIL

(0,6)

NIL

539/16/2010

let

• Mostly equivalent to let*.

• Local variables defined by the same call to

let can't depend on each other in the

initialization clauses.

(let* ((x 0)

(y (+ x 5)))

(print y))

549/16/2010

Binding

• A variable is bound when it is initialized

• The binding of a variable can be changed with setq
or setf

• If two variables have the same name, the inner
binding shadows the outer one.

(let ((a 1))

(+ a (let ((a 10))

(+ a 1))))

⇒12

559/16/2010

Two Kinds of Variables

• Lexical or “static”

– A local variable

– References can be made only within the program

construct where it is created or bound

• Special or “dynamic”

– A global variable

– References can be made at any time, anywhere

569/16/2010

Local variables have lexical scope

(defun gamma (v)

(let ((w 7))

(print v)

(print w)

(delta (+ v w))))

(defun delta (delta-arg)

(print delta-arg)

(print w) ; this won’t work

(print v) ; this won’t work either

)

579/16/2010

Why Use a Special Variable?

• Global

• Dynamic extent of bound special variables

589/16/2010

Special variables have dynamic

extent
(defvar *v* 3)

(defvar *w* 19)

(defun gamma (*v*) ;will shadow the outer value

(let ((*w* 7)) ;will shadow the outer value

(print *v*)

(print *w*)

(delta (+ *v* *w*))))

(defun delta (delta-arg)

(print delta-arg)

(print *w*)

(print *v*))

599/16/2010

Example of let binding a special

(defvar *default-file*) ; no value

(defvar *default-directory “c:/”)

(defun process-file (file directory)

(let ((*default-file* file)

(*default-directory* directory))

(print *default-file*)

(print *default-directory*)

(loader)))

(defun loader ()

;; This will signal an error unless called

;; by process-file

(load (merge-pathnames *default-file*

default-directory)))

609/16/2010

macros and special operators

• some Common Lisp operators are not

functions

• when the name of a macro or special

operator appears as the first element in a list

to be evaluated, the rules for how the other

elements of the list are dealt with depend on

the particular macro or special operator

619/16/2010

setting the value of a variable

• The special operator setq and the macro setf

are used to set the value of a variable named

by a symbol

• (setq x 37.0)

• (setf z (+ 2 3))

• (setq eye-color ‘blue)

629/16/2010

Variable Assignment Using

setq and setf
• The second element of the list (variable

name) is NOT evaluated

• The third element of the list is evaluated

• (setq x 35.0)

• The “variable” being “set” is named by the

symbol x

639/16/2010

Program Data is Typed,

Variables are NOT typed
• (setq x 35) ; value of x is integer

• (setq x 35.0) ; value of x is float

• There are no type restrictions on the value of

a variable

• The value of a variable may be any lisp

object

• Every lisp object has a type

649/16/2010

ANSI Lisp is Case-Insensitive

cont’d

• These lines are all equivalent:

– (setq color ‘red) ; downcase

– (Setq Color ‘Red) ; capitalized

– (setq color ‘RED) ; uppercase

659/16/2010

Function Definitions

• Use defun

• Specify function name, list of argument

names, then body of function

(defun my-square (x)

(* x x))

(my-square 7) ==> 49

669/16/2010

Function definition

(defun board-dimensions ;name

(length width) ;lambda-list

(* length width)) ;body forms

(board-dimensions 12 14)

679/16/2010

Function definition optional

arguments
(defun board-dimensions

(length width &optional (extra 0))

(* (+ length extra)

(+ width extra)))

(board-dimensions 10 12 1)

(board-dimensions 10 12)

689/16/2010

Function definition keyword

arguments

(defun board-dimensions

(length width

&key (extra-width 0) (extra-length 0))

(* (+ length extra-length)

(+ width extra-width)))

(board-dimensions 8 12 :extra-length 1)

699/16/2010

Function definition rest

arguments

(defun board-dimensions

(length width

&rest who-is-to-do-the-work)

(print “The list of those to do the work follows:”)

(print who-is-to-do-the-work)

(* length width))

(board-dimensions 8 12 ‘donald ‘louie ‘dewey)

709/16/2010

Specifying &optional and &key

arguments

Each &optional and &key argument may be

specified in any of 3 ways

• symbol, in which case the default value is nil

• list of symbol and default value

• list of symbol, default value and another

symbol, which in any call to the function will

have the value t or nil depending on whether

the function call included a value for this

&optional or &key argument

719/16/2010

3 element list specification of

&optional or &key argument

(defun do-it (previous-balance additional-funds

&optional (report nil report-p))

(let ((new-balance

(+ previous-balance additional-funds)))

(when report-p

(format t

"~%Accounting has requested that we ~

~:[do not issue ~; issue~] a report"

report)

(if report

(format t

"~%current balance is ~,2f"

new-balance)))

new-balance))

729/16/2010

Function definition lambda-list

keywords

• Must follow all required arguments

• &optional must precede &key or &rest

• Inadvisable to use both &optional and &key

in the same lambda-list

• Using &key and &rest in the same lambda-

list requires better understanding

739/16/2010

Data Equality

• internally Lisp refers to most objects via

pointers

• fundamental equality operation is EQ

– only true if the two arguments point to the same

object

– test is very efficient

• EQL, which is slightly less restrictive than

eq, is the default test for equality in most

functions which do comparison of objects

749/16/2010

arithmetic functions take all

appropriate numeric arguments

CG-USER(34): (+ 60 5.0 1/2)

65.5

CG-USER(35): (- 60 5.0 1/2)

54.5

CG-USER(36): (* 60 5.0 1/2)

150.0

CG-USER(37): (/ 60 5.0 1/2)

24.0

759/16/2010

Creating Lists

• (list ’this 'is ‘a ‘list) --> (THIS IS A LIST)

• ‘(so is this) --> (SO IS THIS)

• (+ 2 3)

• (defun square-it (it) (* it it))

769/16/2010

printed output

• print <object to print>

• prin1 <object to print>

• princ <object to print>

• format

– t, nil or where to print

– format string

– format arguments

779/16/2010

printed output cont’d

CG-USER(1): (print "abCd")

"abCd"

"abCd”

CG-USER(2): (prin1 "abCd")

"abCd"

"abCd"

CG-USER(4): (princ "abCd")

abCd

"abCd"

789/16/2010

printed output cont’d 2

CG-USER(22): (format t

"~%~s and ~a paid $~5,2f for ~d pupp~:@p"

"John" "Mary" 25.99 1)

"John" and Mary paid $25.99 for 1 puppy

NIL

CG-USER(23): (format t

"~%~s and ~a paid $~5,2f for ~d pupp~:@p"

"John" "Mary" 25.99 2)

"John" and Mary paid $25.99 for 2 puppies

NIL

799/16/2010

Input

• (read *standard-input*)

– Reads one Lisp object from *standard-input*

– Examples of “one Lisp object”:

• String: “hello, world”

• Symbol: RED

• List: (one two three)

• Number: 3.1415

– argument shown in the call above is optional

809/16/2010

Output

• (print 'hello *standard-output*)

– Prints HELLO to *standard-out*

– Returns the symbol HELLO as its value

– Stream argument shown above is optional

USER(2): (print 'hello)

HELLO

HELLO

USER(3):

819/16/2010

Summary

• Lisp is a very rich language

– there are very many predefined useful functions

– can’t remember all details of all, but don’t need

to

• Extremely easy to add your own functions

829/16/2010

Allegro CL Certification Program

Lisp Programming Series Level I

Session 1.1.2

Overview of Allegro Common Lisp

839/16/2010

Delivering Applications

• Standard Allegro CL license allows you to develop

and run the application on the licensed machine(s)

• There is no "executable" per se as with C++ or

Visual Basic

• The "application" is a collection of files including

the proprietary Allegro lisp engine

• Delivered applications must include the core lisp

engine (interpreter, garbage collector, core language

functions, etc.) but may have to exclude the

development environment and possibly the compiler

849/16/2010

Downloading Patches

• Franz regularly releases patches to their various
products.

• There is a function that downloads
(sys:update-allegro)

• Follow the directions displayed when (sys:update-
allegro) completes.

• Install | New Patches in IDE is dialog-based way to
call sys:update-allegro

859/16/2010

What's On My Bookshelf

• Common Lisp, The Language, 2nd Edition.
Guy L. Steele Jr. (1990, Digital Equipment
Corporation.

• ANSI Common Lisp (Paul Graham 1996,
Prentice Hall). Excellent instructive text for
basic language features.

• On Lisp, Advanced Techniques for Common
Lisp (Paul Graham 1994, Prentice Hall).
Excellent instructive text for advanced
techniques.

869/16/2010

More On My Bookshelf

• Paradigms of Artificial Intelligence Programming:
Case Studies in Common Lisp. Peter Norvig (1992,
Morgan Kaufman). Excellent book on AI with well
written lisp code.

• Object-Oriented Programming in Common Lisp, A
Programmer's Guide to CLOS. Sonya E. Keene
(1989, Symbolics).

• The Art of the Metaobject Protocol. Kiczales et. al.
(1991, MIT). Advanced book on concepts of
object-oriented programming in Common Lisp.
Excellent, but don't bother until you have a year or
two of experience.

879/16/2010

More On My Bookshelf

• Practical Common Lisp, Peter Seibel (Apress

2005)

• Basic Lisp Techniques. David J. Cooper, Jr.

889/16/2010

Class Information

• One 2-hour presentation each week: next

class 10:00 AM PDT (California Time) next

Wednesday

• Lecture notes and homework available,

online at http://www.franz.com/lab/

• One-on-one help via email at

training@franz.com

