
111/10/2004

Allegro CL Certification Program

Lisp Programming Series Level 2
Session 1

Homework

211/10/2004

Functions

• Write the hello-world function. Pass the
stream as an optional argument

• Pass the stream as a keyword argument
• Write the function SUM that returns the sum

of all its arguments. Write it such that it can
take any number of arguments.

311/10/2004

setf

• Write a setf function on 3RD that does this:
(setq list ‘(1 2 3 4 5 6))

(setf (3rd list) 7)

list

⇒ (1 2 7 4 5 6)

411/10/2004

Functions

• Write a function EXPENSIVE that calculates
the square of a number

• Write a function FRUGAL that returns the
same answer, but only calls EXPENSIVE
when the given argument has not been seen
before

511/10/2004

Mapping

• Use mapping functions to sum the elements
of a list

611/10/2004

Multiple Values

• TRUNCATE takes two arguments and
returns two values. Write a function that
calls it and returns only its second value (the
remainder).

711/10/2004

Hash Tables

• Using a hash table, write the following:
– (occurrences ‘(a b r a ca d a b r a))
– Returns ((A . 4) (R . 2) (B . 2) (D . 1) (CA . 1))

811/10/2004

Macros

• Write some macros that help generate HTML
• Send output to *standard-output*
• (as center “Lisp Class”)

– <center>Lisp Class</center>
• (with center (princ “Lisp”) (princ “ Class”))

– <center>
– Lisp Class
– </center>

911/10/2004

Macro Lab 2
• Implement rotatef as a macro

– (let ((a 1) (b 2)) (rotatef a b) a) => 2

• Implement "mydefun" as a macro that works like
defun

• Implement "mytypecase" as a macro that works like
typecase (hint: use typep and cond)
– (typecase x
– (symbol (print ‘symbol))
– (string (print ‘string)))

1011/10/2004

Closures
;;;Where is the closure?

(defun add1 (list)
 (mapcar #’(lambda (n) (+ n 1)) list))

(defun sum (list)

 (let ((sum 0))
 (mapcar #’(lambda (n)

 (setq sum (+ sum n)))
 list)

 sum))

