Allegro CL Certification

Program
Lisp Programming Series Level 2

Goals for Level 2

e Build on Level 1

— Assumes you can write functions, use the
debugger, understand lists and list processing

e Detailed Exposure To
— Functions
— Macros

— Object-oriented programming

Format of the Course

e One 2-hour presentation each week
— Lecture
— Question and answer

— Sample code

e [ecture notes available online
(http://www .franz.com/lab/)

e Homework

* One-on-one help via email

Session 1 (today)

Advanced features of Lisp functions
Structures, Hash Tables, Bits and Bytes
Macros

Closures

Session 2

Common Lisp Object System (CLOS)
e Top Ten things to do in CLOS

e (Classes, instances, and inheritance
 Methods

e Class precedence list

 Programming style

Session 3

Performance considerations with CLOS
The garbage collector
Error conditions

Using the IDE to make Windows™ windows

Homework

Lisp 1s best learnt by hands-on experience
Many exercises for each session

Will dedicate class time to reviewing
EXErcises

Email instructor for one-on-one assistance
doing the homework or any other questions
relevant to the class

— training @franz.com

Getting Allegro Common Lisp

This class 1s based on version 6.2.

Trial version should be sufficient for this
module

— Download free from http://www.franz.com/
— Works for 60 days

I will be using ACL on Windows

You can use ACL on UNIX, but the
development environment 1s different
and I won't be using it. Fp

Allegro CL Certification

Program
Lisp Programming Series Level 2

Session 2.1.1

Functions

Ways to define functions

* defun
» Jambda
* flet

* labels

Defun

(defun double (x)
"Doubles the number"
(declare (fixnum x))
(+ X X))

(defun fn-name arglist
optional-doc-string
optional-declarations

code)

Argument List

* Contains names for variables

» that get their values from arguments provided in
calls to the function

» persist throughout the body of the function
* are not typed

* May contain optional and keyword
arguments

Keyword Arguments

(defun print-array-size (array
&key
(stream *standard-output*)
UseGraphics)
(let ((size (length array)))
(if UseGraphics
(drawsize size stream) ,; then
(print size stream)) ; e€lse
size)))

e (all the function like this:

— (print-array-size *my-array¥*)

e Or like this:

— (print-array-size *my-array* :stream my-open-file)

13

Keyword Arguments

Call the function with any number of the keyword
arguments, in any order

Arguments specified as name/value pairs

— :stream my-open-file
Costs a couple microseconds
— Because Lisp must parse the argument list
Use when some arguments are only rarely needed
— Source code 1n callers 1s greatly simplified
Or when different calls will need different groups of
arguments

14

Keyword Detail

&key (stream *standard-output*) UseGraphics

* &key specifies the arguments that follow are
keyword arguments

e Each argument can either be a two-element list, a
three-element list, or a single symbol

— Three-element list 1s used for supplied-p arguments,
described later on

e Default value of an argument, when not passed by

the caller, 1s the second element of the -
| Fyuﬁm
15

two-element list, or NIL if not otherwise
specitied

Optional Arguments

(defun print—-array-size (array
&optional
(stream *standard-output*)
UseGraphics)
(let ((size (length array)))
(if UseGraphics
(drawsize size stream) ,; then
(print size stream)) ; e€lse
size)))

e (Call the function like this:

— (print-array-size *my-array¥*)

e Or like this:

— (print-array-size *my-array* my-open-file)

16

Optional Arguments

Call the function with any number of the optional
arguments
Lisp determines which one is which by position

— To specify the second optional argument, you must
always specify the first as well

Costs a couple microseconds
— Because Lisp must parse the argument list
Use when some arguments are only rarely needed,
and when there aren't very many of them o @& »
Fly
17

— Source code 1n callers 1s greatly simplified

Other possibilities

(defun incr (n &optional inc)
;s 1f the value of inc was not specified,
;s or if it was specified but not a number,
;s then set it to 1.
(if (not (numberp inc)) (setq inc 1))
(+ n inc))

(defun incr (n &optional (inc 1 increment-p))
;7 lncrement—-p TRUE when argument was specified
;7 by caller
(if (and increment-p (not (numberp inc)))
(print "non—-numeric increment"))
(+ n inc))

Optional and Keyword Arguments

* Ways to specify the argument
* <name> -- defaults to nil
e (<name> <default value>)

* (<name> <default value> <supplied-p>)

* Use optionals for small numbers of non-
required arguments that are easy to
remember

* Use keywords with either large number< of
non-required arguments or ones that F“*
are hard to remember

k" 3 -h‘

19

&rest example

(defun add (&rest numbers)
(let ((sum 0))
(dolist (n numbers)
(setg sum (+ sum n)))

sum))

 (Call it this way:
+ (add 1 2 4)
* Or this way:
- (add 9 1 8 4 8 6)

&rest Arguments

e Caller may pass any number of arguments,
there 1s no limat

e Lisp combines all the arguments into a single
list
 Needed only rarely

e Generally used when all the arguments have
the same type and will participate equally 1n
the operation S

Pointers to Functions

e The usual way of calling a function:
- (+ 3 4)

e Alternative way:
— (funcall #'+ 3 4)

" "

* #'+ 1s a pointer to the function "+

e Function pointers can be passed as
arguments, returned from functions, or stored
as data L

22

Pointers to Functions

* #’add

— Is a reference to the function named ADD

(defun combiner (n)
(if (typep n 'list) #'list #'+))
;; Example of returning a function pointer

;; from a function.

(setg *combiner* (combiner 3))

Calling a Function by its Pointer

° # v +
— #<FUNCTION +>

e (funcall #'+ 3 4 5 6)
— 18

 (apply #'+ (list 3 4 5 6))
- 18

Using Function Reterences

» Functions can be used just like any other type
object

(defun combiner (x)
(typecase x (number #'+) (list #'append) (t #'list)))
COMBINER
USER(49): (defun combine (&rest args)
(apply (combiner (first args)) args))

COMBINE

USER(50): (combine 2 3)

5

USER(51): (combine '(a b) '(c d))
(A B C D)

USER(54): (combine 'a 'b 'c)
(A B C)

Function References

 Commonly used in sorting routines
— (sort "(5 1 4 6) #'<)

- #'< small numbers first
— #'> big numbers first

- #'string< A before Z
- #'string> Z before A

* Often used when mapping over a collection
(vector, list, hash table, etc.) F‘*’f' -.
— (mapcar #'print '"(5 1 4 6)) '

L

26

[Lambdas

e Nameless fns

(setg function #'(lambda (x y) (* x y)))
(setqg function #'(lambda (x y) (+ x y)))
(funcall function 3 4)

Lambda - Example
* Example

(defun increment-all (&rest numbers)
(mapcar #'(lambda (x) (+ x 1))
numbers))

(increment-all 5 6 7 8)
(6 7 8 9)

Where do you use lambdas

* When a function will have only one caller
and 1t 1s relatively trivial

* Saves using up you namespace

* Seeing the code 1n place may improve
readability in some situations

* Commonly used with mapping functions

Other Functions of Functions

 Many tools available to investigate your
environment

tboundp

* Determines 1f a symbol is associated with a
function definition or function binding

(fboundp 'double)
#<Interpreted Function DOUBLE>

fdefinition

* (fdefinition '+) retrieves the function
object associated with the argument. Same
as symbol-function for symbols, but also
works on names that are lists (such as
(setf foo)).

» Function-lambda-expression retrieves the

definition, 1f 1t 1s available (but the
argument must be a function ~hiect nnt g

function name) FM[M

32

fmakunbound

* (fmakunbound 'add)

* makes the function named ADD become
undetfined

» analogous to makunbound for variables

Symbol-function

» Returns a symbol’s tn

» Note: you can also sett this

> (setf (symbol-function 'double) #'(lambda (x) (+ x x)))
#<Interpreted Function DOUBLE>

> (double 5)

10

Global .vs. Local Functions

* Defun’s are global

- Lambda’s can only be used 1n place unless
the are assigned or stored on something

* flets and labels can be used to create tns that
are only available in a local context

I.ocal Functions - labels

- Enables you to define a function and use it
within the scope of the labels

* Think of it like a let* for functions

(defun test-3rd ()
(labels ((3rd (1lst)
(first (rest (rest 1lst)))))
(print (3rd '"(1 2 3 4)))
(print (3rd '"(a b c d)))))

SETF Functions

- setf 1S useful when you have a pair of
operations for getting and setting a value

* In other languages, you would name the pair
Get-xxx and Set-xxx

* With setf, you have only one name

(first list) , gets first element of 1list

(setf (first 1list) 17) , sets first element to 17

SETF Function Definition

;;; Get the first element
(defun 1lst (list)
(car 1list))

;75 Set the first element
(defun (setf 1lst) (new list)
(rplaca list new)
new)

Using SETF

(setg a '"(one two three))
(1lst a)
—> ONE
(setf (1lst a) 1)
-> 1
(1st a)
-> 1
a
—> (1 two three)

Many Operations in Lisp itself
are setf-enabled

* first, second, third, last, nth, elt
* aref, fill-pointer
 Elements or fields of a structure

e Elements or slots of a CLLOS instance

* symbol-value, symbol-function

« gethash

The Idea of Mapping Functions

* You pass a “pointer to a function” as one of
the arguments

* The “pointer to a function” 1s applied to each
element of a collection

e The results of the individual calls may be
collected up into a list

mapcar

* (mapcar fn list &rest more-lists)

e Example:

> (mapcar #'print '(a b c))

A

B

C

(A B C)

> (mapcar #'cons '"(a b c) '"(1 2 3))

((A . 1) (B . 2) (C . 3))

maphash

* (maphash function hash-table)
— Hash tables covered in more detail later

(maphash #'(lambda (key value)
(format t "~&k=~A,v=~A" key value)
ht)

¥

Fr

43

The Idea of Multiple Values

e Sometimes you want a function to return
more than one value

e Option 1: Make an object that contains the
values
— (defun foo () (list 1 2))
e Option 2: Use Lisp multiple values

— (defun foo () (values 1 2))
— 1 1s said to be the “first value”
— 2 1s said to be the “second value”

multiple-value-setq
e Use it like setq to capture multiple values

(let ((x 0)(y 0))
(print x) (print y) ; values before

(multiple-value-setqg (x y) (fo0))

(print x) (print y) ; values after

)

Multiple-Value-Bind

e Use it like 1et or 1et* to capture multiple
values 1n new local variables

(multiple-value-bind (left right) (foo0)
(print left)
(print right))

Allegro CL Certification
Program

Lisp Programming Series Level 2

Session 2.1.2
Structures and Hash Tables

47

User-defined structures

e Can either use CLOS instances or defstructs

— both store data in a user-defined form
— 1nstances can have behavior in addition

— defstructs are more efficient, but less powerful

e Designed to look similar in code
— slot references look like function calls

— can switch between them during development

FM{

8

Structures

e Define with defstruct
e create one with (make-<name> ...)

e access slot with <name>-<slotname>

> (defstruct route-segment
node—number
start
end)
ROUTE-SEGMENT
> (setf rs (make-route-segment :node—-number 5 :start 2 :end 7))
#S (ROUTE-SEGMENT NODE-NUMBER 5 START 2 END 7)
> (route-segment-start rs)
2

49

defstruct with default values

e Example

> (defstruct point
(x 0)
(y 0))
POINT
> (setf pt (make-point))
#S(POINT X 0 Y 0)

Structures

Standard Lisp Structures are really just
vectors.

Accessing an element of a structure 1s as fast
as accessing an element of an array.

The reader functions generated by defstruct
get compiled 1into an vector access of a
specific position (fast!)

It you redefine the positions, you have to
recompile your code F

LQ _

51

defstruct with type

e Example

> (defstruct (point (:type list))
(x 0)
(y 0))
POINT
> (setf pt (make-point :x 10 :y 20))
(10 20)

defstruct with type and name

e Example

> (defstruct (point (:type list) (:named t))
(x 0)
(y 0))

POINT

> (setf pt (make-point :x 10 :y 20))

(POINT 10 20)

Hash tables

e Pair-oriented: Associate keys with values,
just like alists and plists

e Could use lists for small ones, but search
time grows proportional to size of list

* hash table computes hash function to use as
index

— speed largely independent of size

e have to build your own in many other ___
languages F

Hash table examples

> (setf ht (make-hash-table))
#<HASH-TABLE #xDD7410>

> (gethash 'color ht)

NIL

NIL

> (setf (gethash 'color ht) 'brown)
BROWN

> (gethash 'color ht)

BROWN

T

gethash’s Multiple values

* gethash returns two values
— value associated with key or n1L

— Whether or not the value was found
e Second value helps you distinguish between
- n1L as the value of the key

- NIL as the value you get when the key has no
value

Hash Table Fns

e Examples

> (hash-table-p ht)
(#<STRUCTURE-CLASS HASH-TABLE #x891668>)
> (gethash 'color ht)

BROWN

T

> (remhash 'color ht)
T

> (gethash 'color ht)
NIL

NIL

clrhash

e Examples:

(setf ht (make—-hash-table))
#<HASH-TABLE #xE02D8C>

> (setf (gethash 'color ht) 'brown)
BROWN

> (gethash 'color ht)
BROWN

T

> (clrhash ht)
#<HASH-TABLE #xDD8280>

Hash table iteration example

(let ((test (make—-hash-table)))
(setf (gethash 'a test) "This is the a wvalue")
(setf (gethash 'b test) "This is the b value")
(maphash #’ (lambda (sym str)
(format t "~&~A = ~S" sym str))

test))
B = "This is the b wvalue"
A = "This is the a value"

maphash

e Jterate over the contents of the hash table,
pair by pair

* (maphash #'(lambda (key value) ..code..) hash)

Allegro CL Certification

Program
Lisp Programming Series Level 2

Session 2.1.3
Bits and Bytes

61

Bits and Bytes

 Normally represented as lisp integers

e Often used for efficiency

— Speed: some operations may compile 1nto a
single machine instruction

— Size: a bit vector 1s much smaller than a general
vector

e Often used in combination with foreign
function calls

— Arguments to C++ and WIN32 libraries are often
several "flags" passed as a single integer

62

Bits of Integers

* The #b prefix means a binary notation
USER(1): #blO
2 ; decimal integer 2
USER(2): *print-base*

10 ; numbers normally print in decimal

USER(3): (let ((*print-base* 2)) (print #bl0) nil)
10 ; decimal integer 2 printed in binary

NIL

USER(4):

Bit Combination

e Inclusive OR of bits

USER(1): (logior #bl00 #b110)
#b110

e AND of bits

USER(1): (logand #bl00 #b110)
#b100

e | ess Commonly: logxor, logeqgv, lognand,
lognor, 1logandcl, logandc2, logorcl, logorc2

64

Bit Testing

(defvar *mask* #b1010)
(logtest flags *mask?*)

— True if the second or fourth bit in FLAGS 1s “on”
(logbitp 1 flags)

— True if the second bit in FLAGS 1s “on”
(logcount flags)

— Counts the number of bits that are “on”

Byte Manipulation with 1db

USER(1):
USER(2):

#b0111

USER(3):

#1100

USER(4) :

(setg flags #b111000111)

(ldb (byte 4 0) flags)

; lowest (rightmost) four bits
(ldb (byte 4 4) flags)

; hext four bits

(ldb (byte 8 0) flags)

#011000111 ; Iowest eight bits

Byte Manipulation

USER(5): (setf (1ldb (byte 4 4) flags) #b001l1)
USER(6): flags
#0100110111

e This line modifies the second four bits of the
bit field.

Shift Operation

* ash -- arithmetic shift (left)

— (ash 1 10) --> 1024
- (ash 255 -6) -—> 3

e Note that there 1s no assumption of integer
size. You eventually get a bignum 1f you
keep shifting left.

How Many Bits?

* (integer-length #b1l000) => 4

e Use 1t to print a binary number:

(defun binary-to-string (bits)
(let* ((L (integer-length bits))
(string (make-string L
:initial-element #\0)))
(dotimes (I L)
;7 Note that bit zero is on the right
;s of the string (character L-1).
(when (logbitp (- L I 1) bits)
(setf (char string I) #\1)))
string))

Vectors of Bits

(setqg vector (make-—-array 1024 :element-type “‘bit
:initial-element 0))

;s Access and modify as any vector or array

(setf (aref wvector 0) 1)

;, But elements must be either zero or one
(setf (aref vector 0) 2) , ERROR

Allegro CL Certification
Program

Lisp Programming Series Level 2
Session 2.1.4

Macros

71

What are Macros?

e Macros take lisp code as input and return lisp
code as output. For example,

When evaluating: (incf x)
Evaluate this instead: (setf x (+ 1 x))

(defmacro incf (place)

(list 'setf place (list '+ 1 place)))
- g

72

Macroexpansion

* When the evaluator sees (incf a)

— It notices that INCF names a macro

— It “runs” or macroexpands the macro, which

transforms the line of code into:
« (setf a (+ 1 a))

— It evaluates that expression instead

— So when you type (incf a) to the lisp listener, it
1s as 1f you had typed (setf a (+ 1 a))

Macro Evaluation 1s Difterent

e for functions
— gets the function name
— evaluates all the args

— applies the function to the eval’ed args

 for macros

— passes arguments without evaluating them

— the macro function returns another expression

— evaluator evaluates that expression instead of the
original

74

Recursive Macros

 Macros can macroexpand into other macros
e For example

— WHEN macroexpands into COND

— COND macroexpands into IF

* The evaluator (and the compiler) recursively
macroexpand an expression until there are no
more macros left

Macroexpand function

* macroexpand 18 function which lisp uses to
call macro function and get result

— 1t keeps recursively macro-expanding till no
macros are left

* macroexpand-1 just does one step of
macroexpansion

e (macroexpand-1 '(incf x))

- (setg x (+ x 1))

macro functions

 stored in same function cell of symbol

 stored in a different format so that the system
can tell 1t 1s a macro function

* macro-function <symbol> will return ni1 if
the symbol has a normal function definition
or none, but will return the expansion
function 1f the symbol names a macro

Macro Examples

e Macros are just functions that transform expressions

e Use macroexpand-1 to see definition

> (defmacro nil! (x)
(list 'setf x nil))

NIL!

> (setqg x 5)

5

> (nil! x)

NIL

> X

NIL

> (macroexpand-1 '(nil! x))

(SETF X NIL)

Backquote

Used extensively in macros
Used by itself 1s equivalent to quote
Protects args from evaluation

comma (,) will unprotect

> (setg a 1 b 2)

2

> "(a is ,a b is ,b)
(A IS 1 B IS 2)

Backquote example

(defmacro incf (place)

“(setf ,place (+ 1 ,place)))

e Compared to earlier definition of INCF, this
version 1S shorter, more concise, and easier to
understand (but equivalent)

(defmacro incf (place)
(list 'setf place (list '+ 1 place)))

80

y @

Like comma but splices in list

> (setqg 1lst '"(1 2 3 4))

(1 2 3 4)

> ~(here are the numbers ,@1lst)
(HERE ARE THE NUMBERS 1 2 3 4)

¥

Fr

81

&body

* &body 1S like srest, but typically reserved for macros

e Example: WITH (shorthand for LET, use it to create
one local variable)

(defmacro with ((var &optional val) &body body)
“(let ((,var ,val))
,»@body))

(with (a)

(print a)) ;s this example transforms into:

(let ((a nil))
(print a))

with-open-file example

More complex example. There 1s a built-in lisp macro of the
same name that does almost exactly this.

(defmacro with-open-file ((var &rest args) &body body)

“(let ((,var (open ,Q@args))) ; open file
(unwind-protect
(progn ,@body) ; execute body
(when (streamp ,var) (close ,var)))) ; close

- unwind-protect 18 talked about later on, but it
ensures the file 1s closed even i1f an error
OCCUrs

83

Macro Examples

e Ordered-bounds

(defmacro order-bounds (left bottom right top)
"(progn (if (> ,left ,right) (rotatef ,left ,right))
(if (> ,bottom ,top) (rotatef ,bottom ,top))))

(setg left 10)

(setqg right 0)

(setg top 50)

(setqg bottom 4)

(order-bounds left bottom right top)
;s Now LEFT is 0, RIGHT is 10,

;s TOP is 4, BOTTOM is 50

Macro Examples

e Add onto the end of the list

(defmacro push-last (item list)
“(setf ,list (nconc ,list (list ,item))))

Macro Examples

e Atomic Operations

(defmacro atomic-pop (list)
"(without-interrupts

(pop ,list)))

(defmacro atomic—-push (item list)
"(without-interrupts
(push ,item ,list)))

Iteration Macro

(defmacro while (test &body body)
“(do ()
((not ,test))
, @body))

;, Prints even numbers
(setg I 0)
(while (< I 10)

(print I)

(incf I 2))

Macro Argument Lists

e Use of skey, soptional, srest 1S COMMON 1N MAacros

(defmacro with-resource-string ((resource-string
&key (size 80))
&body body)
"(let ((,resource-string
(allocate-resource-string :size ,size)))
, @body
(free-resource-string ,resource-string)))

Macros with Logic

e A macro need not be just a backquoted list

* A macro 1s an arbitrarily complex function for transforming
one expression into another

(defmacro incf (place)
(1f (symbolp place)
“(setg ,place (+ 1 ,place))
“(setf ,place (+ 1 ,place))))

Macro writing problems

e A macro i1s not a function

— Certain uses are not allowed

e multiple evaluation problem

— Inadvertently evaluate args multiple times

 variable capture problem

— Inadvertently shadow a variable name

Macros are not Functions

 (apply #’when (> x 3) x)

— This 1s an error because APPLY only works on
functions

Don’t evaluate more than once

e A macro similar to OR
(defmacro orl (a b)

“(if ,a ,a ,Db))
 What happens for: (orl (print 1) (print 2))

(if (print 1) (print 1) (print 2))
e To avoid multiple evaluation:

(defmacro or2 (a b)
"(let ((temp ,a))
(1f temp temp ,b)))

Variable Capture

 How would you implement Lisp’s OR
macro?

(defmacro or2 (a b)
"(let ((temp ,a))
(1f temp temp ,b)))

(let ((x nil)
(temp 7))
(or2 x temp))
;7 Returns NIL (there are two TEMPs)

93

Generate symbols that can’t be
captured

 Gensym

(defmacro or3 (a b)
(let ((symbol (gensym)))
"(let ((,symbol ,a))
(if ,symbol ,symbol ,b))))

Turning Functions into Macros

e Do 1t to eliminate a function call

e Do 1t when the function 1s not recursive

(defun second (x) (cadr x))
(defmacro second (x) " (cadr ,x))

(defun sum (&rest numbers) (apply #’+ numbers))
(defmacro sum (&rest numbers) " (+ ,@numbers))

. \‘t

95

When to Use Macros

e Macros help avoid code duplication

(defmacro with-resource-string ((resource-string
&key (size 80))
&body body)
"(let ((,resource-string
(allocate-resource—-string :size ,size)))
, @body
(free-resource-string ,resource-string)))

When to use macros

* You have to use macros when

— you need to control evaluation
e binding (like local variables in LET)
e conditional evaluation (like AND or OR or IF)
 looping (like DO)

e Simplification without a function call (like (SETF CAR)
expanding into RPLACA)

* You can use macros to
— do computation at compile-time
— expand 1n place and avoid a function call

— save typing or code duplication, and to clarify code

97

Problems with using Macros

You cannot use a macro if you have to funcall or
apply 1t

Macro definitions are harder to read

Macro definitions can be harder to debug

— The code you see 1n the backtrace may bear little
resemblance to your source code
Although macros can expand recursively into other
macros, you can’t usually write a recursive
algorithm with them.

Redefining Macros

e Code for macro expansion captured in compiled
files of callers of the macro

e If you change the definitions of the macro itself,
you have to recompile the callers

e Defsystem tool allows you to record these
dependencies once

learning more

e A lot of Common Lisp 1s really implemented as
macros

e Looking at the expansions of these can teach you a
lot about how macros work

(pprint (macroexpand-1 ‘(defun foo (a) (+ a 1))))

Allegro CL Certification
Program

Lisp Programming Series Level 2
Session 2.1.5

Macro Pitfalls and Issues

101

A Macro 1s not a Function

« (apply #’'when (> x 3) (print x))
— This 1s an error

Macro Recursion 1s not like
Function Recursion

(defmacro nth* (n list)
"(if (= ,n 0) (car ,list)
(nth* (- ,n 1) (cdr ,list))))
* macroexpanding nth* will macroexpand

forever when compiled 1n a function like
(defun foo (x 1) (nth* x 1))

e Think of the code you want the macro to
expand 1nto

Valid Macro Recursion

(defmacro or* (&body body)
(cond ((null body) 'nil)
((null (cdr body)) (car body))
(t (let ((temp (gensym)))
"(let ((,temp ,(car body)))

(if ,temp ,temp
(or* ,@(cdr body))))))))

* (or* a b) expands into
(let ((#:924 a))
(if #:924 #:924 b))

104

Multiple Evaluation

This definition of OR evaluates A twice

(defmacro or* (a b)
"(if ,a ,a ,b))

Do it this way 1nstead

(defmacro or* (a b)
"(let ((temp ,a)) (if temp temp ,b)))

Order of Evaluation

e Evaluation order should be left to right

(defmacro and* (a b)
"(let ((temp2 ,b) (templ ,a))
(1f (not templ) nil
(i1f (not temp2) nil temp2))))

(and* (setg x 2) (setg x 3))
;; Returns 3 but x is 2!

106

Avoid Destroying Arg Lists

(defmacro sum-plus-1 (&rest args)
(cons '+ (nconc args (list 1))))

(defun foo () (sum—-plus-1 2 3))

(foo) returns 6

(foo) returns 7

(foo) returns 8

e Because the macro 1s destructively modifying
the source code of the caller

e The source code stops changing
when you compile it

Variable Capture

e Using the OR* macro from a few slides back...
(setg x nil)
(let ((temp 7))
(or* x (+ temp 1)))
e This code attempts to add NIL to 1

* Because the macroexpansion of OR* causes
TEMP to get rebound to NIL

108

Global Variable Capture

(defvar width 5) ; global wvariable
(defmacro notice-width (w)
" (setqg width ,w))

(defun draw-rectangle (x y width height)
(notice—-width width)
(notice—-height height)

.)

* The macro does not affect the global

variable as intended

109

Avoiding Global Variable Capture

 (defvar *width* 5)

e Use naming conventions that distinguish
local from global variables.

110

Avoiding Variable Capture with
Gensym

(defmacro or* (a b)
(let ((symbol (gensym)))
"(let ((,symbol ,a))
(if ,symbol ,symbol ,b))))

111

Avoiding Variable Capture with
Scope

(defmacro sum-squares-w (X V)
“(let* ((x0 ,x) ; WRONG (X0 captured)
(yO ,vy) ; problem occurs in this line
(x2 (* x0 x0)) ,, if form y refers
(y2 (* y0 y0))) ;; to x0

(+ x2 y2)))
(defmacro sum-squares-r (X Vy)
“(let ((x0 ,x) ; RIGHT
(y0 ,v¥))

(let ((x2 (* x0 x0))
(y2 (* y0 y0)))
(+ x2 y2))))

112

Variable capture example

(let ((x0 5))
(* (sum—-squares—w
1 (- (setg x0 10) 9)) x0))
505
(let ((x0 5))
(* (sum—squares-r
1l (- (setg x0 10) 9)) x0))
20

113

SETE: a special kind of macro

> (setqg a nil) ,; setqg only for symbols

a

> (setf a '(one two three)) , setf of a symbol

(ONE TWO THREE)

> (setf (first a) 1) ,; setf of a "place”

1

> A ; list was permanently changed
(1 2 3)

114

Builtin SETF operations

e Lisp knows how to use seTr with many
things (but not everything)
— ListS: first, second, elt, nth, car, cdr
— Arrays: aref
— Obj@CtSI slot-value
— Bits: 1dp
— Hash tables: gethash

Rolling Your Own

e Define your own SETF procedures in one of
two ways:

e By functions and methods:

(defmethod (setf x) (new (object point))
(setf (slot-value object 'x) new))

* By defsetf macros (next slide)

e q
Fr

116

Using DEFSETF

(defsetf car (x) (new)

"(progn (rplaca ,xX ,new) ,new))

(defsetf x (point) (new)
"(setf (aref ,point 1) ,new))

117

Allegro CL Certification
Program

Lisp Programming Series Level 2
Session 2.1.6

Closures

118

What Are Closures?

e Closures are

— Executable functions
— Objects with state

e They usually appear as lambda expressions

e Nothing like them 1n C, C++, Java, VB, or
any other traditional language

* They are functions with a “memory”

119

A Simple Closure

(setg closure
(let ((list '(one two three four five)))
#’ (lambda () (pop list))))

[#<Interpreted Closure (unnamed) Q@ #x2083818a>
(funcall closure)

[l ONE

(funcall closure)
[] TWO

(funcall closure)
[l THREE

120

What Happened?

LAMBDA created an unnamed function

To observe the rules of lexical scoping, the
function can continue to reference LIST even
after returning from the LET

The function makes a “snapshot” of the
variable at the time 1t 1s evaluated

The function carries that snapshot with it as a
segment of data el S

Another Example

(let ((list '(one two three four five)))
(setg closurel #’(lambda () (pop list)))
(setg closure2 #’(lambda () (pop list))))

;7 two closures, both with a reference to LIST
(funcall closurel)

[] ONE

(funcall closure?2)

[1 TWO

122

Now What Happened?

* The two closures both reference a single,
shared closure variable

* They each can see modifications that the
other closure makes

Implicit Closures

e Closures happen implicitly when ever a
function refers to something in the lexical
environment

> (defun add-to-list (num 1lst)
(mapcar #'(lambda (x) (+ x num)) lst))
ADD-TO-LIST

124

Closures and Garbage

* Note that creating a closure allocates
memory and can be a source of garbage and
slowness.

e [f the closure can be allocated on the stack,
then do so using dynamic-extent.

(defun add-to-list (num list)
(labels ((adder (x) (+ x num)))
(declare (dynamic-extent #’adder))
(mapcar #’adder list)))

Closure Example 1

e The adder in:

> (defun add-to-list (num lst)
(mapcar #'(lambda (x) (+ x num)) lst))

ADD-TO-LIST

> (defun make—-adder (n)
#'(lambda (x) (+ x n)))

MAKE-ADDER

> (setf add5 (make—-adder 5))

#<closure 1 #xDDF914>

> (setf addl5 (make—-adder 15))

#<closure 1 #xDE2F34>

> (funcall add5 1)

6

> (funcall addl5 1)

16

126

Closure Examples 2

 (Closures that share variables

> (let ((counter 0))
(defun reset ()
(setf counter 0) counter)
(defun stamp ()
(incf counter) counter))
STAMP
> (list (stamp) (stamp) (reset) (stamp))
(1 2 0 1)

127

Closure Examples 3

 Complement Example

> (defun my-complement (fn)

#' (lambda (&rest args)

(not (apply fn args))))
MY-COMPLEMENT
> (mapcar (my—-complement #'oddp)
'(1 2 3 456 7 8))

(NIL T NIL T NIL T NIL T)
>

128

Cool Example

e Object-oriented programming with closures
e Invented by Guy Steele in 1976

(defun make—account (&key (balance 0.0))
"Create an ACCOUNT object with one slot, BALANCE"
#' (lambda (message &rest args)
(case message

;7 Object supports three methods or messages
(:deposit (incf balance (car args)))
(:withdraw (decf balance (car args)))
(:balance balance))))

(defun send (object message &rest args)
(apply object message args))

129

Example

USER(15): (setqg my—account
(make—-account :balance 125.00))
#<Closure (:INTERNAL MAKE-ACCOUNT 0) @ #x208490b2>
USER(16): (send my—account :balance)
125.0
USER(17): (send my—account :deposit 10.0)
135.0
USER(18): (send my—account :balance)
135.0

130

URL for homework and slides

http://www.franz.com/lab/

131

