Allegro CL Certification
Program

Lisp Programming Series Level 2
Session 2.2.1
Top Ten Things to do in CLOS

1. Define a Class

(defclass position ()
((x :initform O :initarg :x
:accessor xX-position)
(y :initform 0 :initarg :y
:accessor y-—-position)))

2. Make an Instance

(setg sl (make—-instance 'position))
(x—position sl)

00

(setf (x-position sl) 5)
(x—position sl)

[0 5

(setg s2 (make—-instance 'position :x 10 :y 10))
(x-position s2)
[0 10

3. Define a Subclass

(defclass aircraft (position)
((speed :initform 0 :initarg :speed
:accessor speed)
(flightno :initform "" :initarg :flightno
raccessor flightno)))

(setg ml (make-instance ‘aircraft
:Xx 5 1y 5 :speed 2
:flightno 1024))

4. Use Methods

(defmethod name ((a aircraft))
(concatenate 'string "flight "

(princ—-to-string (flightno a))))

(defmethod draw ((a aircraft) stream)
(draw—-text stream (name a)

(x—-position a) (y—-position a)))

5. Use Method Combination

(defclass aircraft-with-icon (aircraft)

())

(defmethod draw :AFTER
((a aircraft-with-icon) stream)
"After drawing the name, draw the icon"
(draw—icon stream *plane-icon*

(x-position a) (y—-position a)))

6. Initialize Instances

(defvar *all-ajircraft* nil)

(defmethod initialize-instance :after
((a aircraft)
&allow—-other-keys)
(push a *all-aircraft¥*))

7. Use Slot-Value

(defmethod set-position ((p position) x y)
(setf (slot—-value p 'x) Xx)
(setf (slot-value p 'y) vy)
t)

(defmethod get—-position ((p position))
(values (slot-value p 'x)
(slot-value p 'y)))

About Slot-Value

* You can always access a slot using slot-value

* The general rule 1s to prefer accessor methods
(e.g. x-position and y-position) Over raw slot-

value.

e Exceptions:

— When the accessor function has a lot of :after, :
before, OT :around methods, slot-value 1s faster

— The accessor function may have :after methods
that you want to avoid in some cases

8. Use SETF methods

(defmethod (setf x-position) :after
(newvalue (a aircraft))

(redraw—-display *screen*))

;s This causes a redisplay when the

;s pPosition changes

(setf (x-position myaircraft) 16)

9. Use Multiple Dispatch

(defmethod save ((p position)
)

(defmethod save ((a aircraft)

)
(defmethod save ((p position)

)

(defmethod save ((a aircraft)

)

(stream file—-stream))

(stream file-stream))

(stream database))

(stream database))

;s The applicable method(s) depends on

;;, multiple arguments.

10. Use Multiple Inheritance

(defclass boeing-747 (passengers—-mixin
commercial-mixin

aircraft)

())

;7 The class is (in most ways) the union
7, of the structure and behavior of the

;s components.

Allegro CL Certification
Program

Lisp Programming Series Level 2
Session 2.2.2
CLOS Overview

13

Common Lisp Object System

 Based on CommonLoops and New Flavors
e Integrates Common Lisp types with Classes
* Uses function calls, not messages

e Uses objects to implement Classes and other
internals

— Metaobject protocol
 [Is part of ANSI Common Lisp standard

Terminology

e Define classes of objects (defclass)
 Make objects (instantiation)

e Instance variables (slots)
 Messages (generic function)

* Applicable behavior (methods)

Classes and Instances

RN

Left| 100 Left 100
bottom | 200 bottom 200
width| 300 width 500
height| 75 height 20

Slot-names slot-values

Slots

e Instances of a class have slots
e Slots have name and value

* Two types of Slots
— Local Slots (most common)
— Shared Slots (more on this later)

08/01/05

Class Inheritance

Terminology

rectangle is a direct superclass of
_ labeled-rectangle

labeled-rectangle is a direct subclass
of rectangle

labeled-rectangle is a subclass of
standard-object

standard-object is a superclass of
labeled-rectangle

t1s a superclass of all classes

CLOS Supports Multiple
Inheritance

Label, font Left, bottom, width, height

Label, font, left, bottom, width, height

Class inherits union of slot descriptions

Supporting Type-Specific
Behavior

* In ordinary functions, a single definition
must dispatch to the appropriate code

(defun area (shape)
(ecase (type—-of shape)
(circle . . .)
(rectangle . . .)
(triangle . . .)))

CLOS Generic Functions Support
Modular Definitions

e Defgeneric to define the interface

e defmethod to define the implementations

(defgeneric area (shape) . . .)

(defmethod area ((shape circle)) . . .)
(defmethod area ((shape rectangle)) . . .)
(defmethod area ((shape triangle)) . . .)

CLOS Generates Dispatch Code

Ordinary Lisp Function

Generic Function

System
generated
code

08/01/05

22

Dispatch on Multiple Arguments

(defmethod draw ((shape rectangle) (stream postscript-stream)) . . .)
(defmethod draw ((shape rectangle) (stream window-stream)) . . .)
(defmethod draw ((shape circle) (stream postscript-stream)) . . .)
(defmethod draw ((shape circle) (stream window-stream)) . . .)

e Because of multiple dispatch, methods do not "belong" to
classes
— They "belong" to a combination of one or more classes

— Differs from message-passing systems where a class implements
certain messages

e Methods are associated with the generic functions

Method Combination

e Each class 1n the list of superclasses can
contribute a component of the effective

method

— Primary method performs the bulk of the work
and returns values

— Before methods do error checking and
preparation

— After methods perform side-effects and cleanup

08/01/05

Class Precedence Lists

e (Class precedence list 1s list of superclasses
e For single inheritance, ordering is obvious
(most-specific first)

* For multiple inheritance, class precedence
list 1s computed according to local ordering
constraints

 When two classes offer competing traits,
CLOS resolves the contlict with precedence

08/01/05 25

Defining a class

e (defclass <class-name> (<superclass>...)
(<slot-definitionl>
<slot-definition2>))

(defclass polnt (graphic-object)
((x :1nitarg :xX :accessor polint—-x)

(y :1lnitarg :y :accessor polnt-y)))

Defining a slot

e Name

e Slot Options
— nitform
— :1nitarg
— :reader
— :writer

— .dCCCSSOr

default value for initialization
argument for initialization
define reader method only
define writer method only

define both reader and writer

defclass Options

e Class Options

— :documentation descriptive string

- :default-initargs arguments for initialization

(defclass circle (point)
((radius :initform 5 :initarg :radius :accessor radius))
(:documentation "A round thing")
(:default-initargs :x 0 :y 0))

08/01/05

Defining the Interface

e defgeneric -- optional, defmethod will
implicitly create

(defgeneric draw—-part (part stream)
(:documentation "Displays the part on a window"))

08/01/05

Defining the Implementation

e Specialized parameter - (part circle)

e Ordinary parameter - stream

(defmethod draw-part ((part circle) stream)
(draw-circle stream (point-x part)
(point-y part) (radius part)))

08/01/05

Make-Instance

e Used to create object given a class
* You can specity initial slot values

+ (setqg my-square (make-instance 'square :x 0 :y 0))

Accessing and Changing Slot
Values

e Retrieving current state
— (slot-value my-square 'Xx)

¢ 0
e Changing the state

— (setf (slot-value my-square 'x) 10)

e 10

e Syntactic sugar
— (with-slots (x) my-square (setg x 15) (print x))

Example - Squares

e Define a simple graphical object

(defclass square ()
((x :initform 0 :initarg :x :accessor x—-position)
(y :initform O :initarg :y :accessor y-position)
(width :initform O :initarg :width :accessor width)))

(setg my—-square (make-instance 'square :x 5 :y 5
:width 15))

Constructor Function

(defun make-square (x y width)
(make—-instance 'square :x x :y y :width width))

e Functional interface for instance creation

* Advantages
— Checking of required arguments
— Class name not advertised

Example - Rectangles

e Define a class using inheritance

(defclass rectangle (square)
((height :initform 0 :initarg :height
raccessor height)))

;7 rectangle inherits from square
(setqg my—-rectangle

(make-instance 'rectangle :x 10 :y 30
:width 10 :heiaght 12))

Example - Method

e Compute area of graphical object

(defmethod area ((object square))
(* (width object) (width object)))

(area my—-square) => 225

Example - Method Inheritance

e To inherit or not to inherit

(area my-rectangle) => 100 , wrong!

(defmethod area ((object rectangle))
(* (width object) (height object)))

(area my-rectangle) => 120

Getting the class of an object

e Using CLASS-OF, CLASS-NAME, TYPEP,
and TYPE-OF

> (class—-of my-square)
#<standard-class square>
> (class—name (class—of my-square))

SQUARE
> (typep my-square ‘square)
T

> (type—-of my-square)
SQUARE

DESCRIBE

e Objects are composed of slots

> (describe my-square)

#<SQUARE 31lab4> is an instance of class SQUARE
X 5

Y 5

WIDTH 15

SLOT-VALUE

e (Gets the value of a slot

> (slot-value my-rectangle 'width)

15

> (slot-value my-rectangle 'height)

12

> (slot-value my-square 'height)

;; error!

> (setf (slot-value my-rectangle 'height) 15)
15

> (slot-value my-rectangle 'height)

15

Other slot functions

 slot-boundp

— Determines 1f the slot has a value
 slot-exists-p

— Determines 1f the object has a slot by that name

e slot-makunbound

— Causes the slot to have no value

:ACCESSOR Slot Option

e Define a function for accessing the slot

* Advantage: Slot name not advertised

— Accessor functions are a good 1dea

(defclass rectangle (square)
((height :initform 0 :initarg :height
raccessor height)))
> (height my-rectangle)
12
> (setf (height my-rectangle) 15)
15

> (slot-value my-rectangle ‘height)
15

INITFORM Slot Option

e Specifies default initial value

(defclass rectangle (square)
((height :initform O :initarg :height
:raccessor height)))
> (setq another (make-instance ‘rectangle :x 6 :y 6))
#<RECTANGLE 34a7>
> (height another)
0

INITARG Slot Option

e Specifies keyword to use with make-instance

(defclass rectangle (square)
((height :initform 0 :initarg :height
traccessor height)))

> (setg yet—-another (make-instance ‘rectangle
:height 14))

#<RECTANGLE Q@ #x6734a9>

> (height yet-another)

14

:ALLOCATION slot option

e Slots have two types of allocation:

— :nstance each instance gets its own slot value
— :class all instances share the same slot value

(defclass triangle (basic-part)
(.
(number-of-sides :reader number-of-sides
tinitform 3
tallocation :class)))

Alternate approach

e Use methods instead of shared slots

(defmethod number-of-sides ((part triangle)) 3)

Methods

e Associate behavior with objects

(defclass point ()
((x :accessor point-x :initarg :x :initform O0)
(y :accessor point-y :initarg :y :initform 0)))

(defmethod distance ((from point) (to point))
(pythagonize (point-x from) (point-y from)
(point-x to) (point-y to)))
(defun pythagonize (x1 yl x2 y2)
(let ((dx (- x1 x2)) (dy (- yl y2)))
(sgqrt (+ (* dx dx) (* dy dy)))))

.\3.
Fr

Multiple Dispatch
e Method you get depends on all arguments

(defclass dot (point)
((size :accessor dot-size :initform 1 :initarg :size)))

(defmethod distance ((from point) (to dot))
(- (pythagonize (point-x from) (point-y from)
(point-x to) (point-y to))
(dot-size to)))

Dispatching on Class T

e Class T 1s the class of all objects

(defmethod distance ((from t) (to t))
(error " Don’t know how to compute distance"))

OR

(defmethod distance (from to)
(error " Don’t know how to compute distance"))

Dispatch Using EQL

e Applies to program constants

(defmethod distance ((from (eqgl :origin)) (to t))
(distance (make-instance 'point :x 0 :y 0) to))

> (distance :origin (make-instance 'point :x 3 :y 4))

Dispatch Using EQL, cont’d.
e Also applies to instances

(defclass place ()())
(defmethod name ((x place)) "someplace")

(setg home (make-instance 'place))

(setqg office (make-instance 'place))

(defmethod name ((x (eql home))) "my home")
(defmethod name ((x (eqgl office))) "my office")

(name (make—-instance 'place)) —--> "someplace"
(name office) ——> "my office"

:BEFORE and :AFTER methods

e Before or after the “primary” method

e Return value 1s 1gnored

(defmethod area :before ((object square))
(when (< (width object) 0)
(error "Width is negative.")))

Order of Before and After

e All before-methods 1n most-specific-first
order.

* The most specific primary method.

e All after-methods 1n most-specific-last order.

08/01/05

:AROUND methods

 An around method shadows all before, after,
and primary methods

e Value returned from generic function 1s value
of around method

e Nested around methods: most-specific first

(defmethod area :around ((object square-with-hole))
(- (call-next—-method)
(area-of-hole object)))

08/01/05

Primary methods call-next-method

e Do it when you want to be “inside” all the :
around, :before, and :after methods

e next-method-p can be useful in this context

(defmethod area ((object square-with-hole))
(- (call-next—-method)

(area-of-hole object)))

Call-next-method with arguments

(defmethod draw-part ((part hidden-circle) stream)
(declare (ignore stream))
(call-next-method part *hidden-stream*))

call-next-method example

(defmethod ((a list) b)
(format t "First arg ~S is a list .~%" a)
(if (next-method-p) (call-next-method)))
(defmethod (a (b number))
(format t "Second arg ~S is a number.~%" b)
(if (next-method-p) (call-next-method)))
> (foo '"(1 2 3) 'a)
First arg (1 2 3) is a list.
> (foo 'a 3)
Second arg 3 is a number.
> (foo '"(1 2 3) 3)
First arg (1 2 3) is a list.
Second arg 3 is a number.

SETF Methods

e Example:

(defmethod (setf height) (newvalue (part square))
(setf (width part) newvalue))

1nitialize-instance

 Never override the primary method!

e This 1s where you initialize the object

(defmethod initialize-instance :after
((object square) &key
&allow—-other-keys)
(when (< (width object) 0)
(error "Width is negative.")))

> (make-instance 'square :width -5)

print-object

 Modity standard common lisp behavior

(defmethod print-object ((object point) stream)
(let ((x (point-x object)) (y (point-y object)))
(if *print-escape*
(print—-unreadable-object
(object stream :identity t :type t)
(format stream " ~S,~S " x y))
(format stream " ~S ~S,~S " (type-of object) x vy))))
> (setqg p (make-instance “‘point :x 3 :y 2))
#<POINT 3,2 @ #x204d8452>
> (princ p)
POINT 3,2

print-object Support

* print-unreadable-object 1S @ macro that
helps you print
— #<type stuffhere identity>
— #<POINT 3,2 @ #x204d8452>

* *print-escape* 1s set by the pretty printer
to indicate the desire for #<...>

Inheritance and Combining
Methods

e Use Class Precedence List to determine
methods that run

* Most specific applicable primary method
runs

e All before methods run, most specific first

e All after methods run, most specific last

08/01/05

Class Precedence List

(defclass basic-part () ..)
(defclass rectangle (basic-part) ..)

 Rulel: A class always has precedence over its
super classes

e Rectangle has precedence over basic-part
e Basic-part has precedence over standard-object
e Standard-object has precedence over T

* Precedence list that satisfies all these constraints:
— (rectangle basic-part standard-object T)

08/01/05

Class Precedence Lists

e Complications when there 1s more than one direct
super class

e Rule2: Each class definition sets the precedence
order of 1its direct super classes

e Rule3: Classes appear only once in CPL

(defclass rectangle (selectable-part saveable-part
basic—-part)
(x vy width height))

e Selectable-part has precedence over saveable-part
e Saveable-part has precedence over basic-part

08/01/05 64

Precendence example

())

(defclass bar ()
(defclass baz () ())
((
((

defmethod foo
defmethod foo

(x bar)) (format t “I am a bar!~%"))

(X baz)) (format t “baz I am!~%"))

(defclass bsubl (bar baz) ())
(defclass bsub2 (baz bar) ())
(setg bl (make—-instance ’'bsubl))
(setg b2 (make-instance ’bsub2?))

(foo bl)
I am a bar!
(foo b2)

baz I am!

Putting 1t all together

Developing a Simple CLOS Program
e Specify the problem

 Identify objects of interest

e Design a class hierarchy

e Design a client interface (API)

e Create the implementation
 Extend it (subclasses)

Some Guidelines on API

e Restrict access to internal data structures

(encapsulation)
— Specialize describe-object and print-object
— Offer Accessor methods in the API

* Provide constructor functions
— (Make-point) rather than (make-instance 'point)

e Define contracts for generic functions so client can
extend them

Reasons to Use Class Hierarchies

Subclasses 1nherit structure (via slots)
Subclasses 1nherit behavior (via methods)

Multiple inheritance supports modular reuse
without copying
— write labeled-object once and mix it in to labeled-circle
and labeled-rectangle
Abstract classes are classes in the hierarchy that you

never instantiate
— providing partial but not complete behavior (e.g. labeled-

object) T B
Fiudly

08/01/05

Allegro CL Certification
Program

Lisp Programming Series Level 2

Session 2.2.3
CLOS Advanced Features

69

Congruence of Method Argument
Lists

* All methods of a generic function must have
congruent argument lists

e args are congruent when
— there are the same number of required args
— there are the same number of optional args
— use of &rest and &key compatible

e CLOS signals error if you try to define a
method whose arglist 1sn’t congruent . R&NﬁLﬂ

08/01/05

Congruency examples

* (xy)1s congruent with (height width)

* (n &optional inc) not congruent with
(number 1ncr)

e (thing &rest dims) 1s congruent with (box
&key width height depth)

08/01/05

Keyword Congruency Examples

e Illegal:
— (defmethod test (r1 r2)...)
— (defmethod test (rl r2 &key 12) . . .)

e Legal:
— (defmethod test (rl1 r2 &key {1 {2 13)...)
— (defmethod test (r1 r2 &key &allow-other-keys) . . .)
— (defmethod test (r1 r2 &key 3 &rest key-args) . . .)

.\‘i |

Fray

08/01/05 72

(defclass
((label
(font

(defclass
((font

Specialization of Slots

labelled-rectangle (rectangle)
:initarg :1label)

:initform (make-font ‘(modern 10))
raccessor rectangle-font)))

roman-rectangle (labelled-rectangle)

:initform (make-font “(times-roman 12)))))

e Most specific :initform 1s used.

08/01/05

Using a Shared Slot

e :allocation :class
e Use them as an alternative to global variables
e Shared slots are stored within the class

* Changes by one instance are visible to all
instances

08/01/05

Inheritance of Shared Slots

e Shared slots are inherited
— Instances of subclasses see the same value as
instances of the class
e A subclass can shadow the slot value in a
superclass by defining it as a direct slot
definition
— Instances of subclasses see a different value than
do 1nstances of the class

08/01/05

Specializing Shared Slots to Local
Slots

e A subclass can change the slot allocation to :
instance

e Instances of the subclass will use a local slot,
whereas 1nstances of the class will use a
shared slot

08/01/05

defgeneric

 arglist normal, but no 1nitial values or
supplied-p allowed
e of options
— :declare -- declaration for whole gf, only
optimize allowed by spec

— :argument-precedence-order -- lists all required
args in order for dispatch

— also :documentation, :generic-function-class, :
method-class, :method-combination

08/01/05

77

:argument-precedence-order

(defmethod foo ((a list) Db)
(format t "Arg 1 ~S is a list~%" a))
(defmethod foo (a (b number))

(format t "Arg 2 ~S is a number~%" b))

(foo '"(1 2 3) nil)

Arg 1 (1 2 3) 1is a list

(foo '"a 10)

Arg 2 10 is a number

(foo '"(1 2 3) 10)

Arg 1 (1 2 3) is a list

(defgeneric foo (a b) (:argument-precedence-order b a))
(foo '"(1 2 3) 10)

Arg 2 10 is a number

Changing Generic Functions

* Legal Changes
— any redefinition if there are no methods
— argument-precedence-order
— documentation

— default-method-class

e Jllegal Changes
— lambda list (congruence rules not satisfied)

FMVL

— method combination

— generic-function-class

08/01/05

9

Changing Methods

* Redefining a method with the same
specializers and qualifiers replaces old

e If specializers and qualifiers change, a new
method 1s added

e A method can be removed with remove-
method or Emacs command f£i:kill-definition

08/01/05

find-class

e given a class name, returns class object

e works for builtin types as well

08/01/05

class-name

e 1nverse of find-class

e given class object, returns name

08/01/05

class-of

e given Instance of a class, returns class object

e returns special class objects for primitive
types

® C.g. (class—-of "abc") —> #<BUILT-IN-CLASS STRING>

08/01/05

Almost All Built-in Types Have
Corresponding Classes

All Classes with proper names have corresponding types

(find-class “string)
#<BUILT-IN-CLASS STRING>
But there is no class named bit.

(defmethod pretty-type-name ((c cons)) "Cons")
(defmethod pretty-type-name ((c symbol)) "Symbol")
(defmethod pretty-type-name ((c rectangle)) "Rectangle")

08/01/05

Inheritance for Built-in Types

t

symbol N 7ay N stream
ist vecr\omplex integer <.

null cons Bit-vector string

08/01/05

Defstruct defines classes

(defstruct s-rectangle
(x 0)
(y 0)
wi dt h
hei ght)

(cl ass-of (nake-s-rectangl e))
=> #i<structure-class s-rectangl e>

(def net hod area ((shape s-rectangle))
(* (s-rectangl e-w dth shape)
(s-rectangl e- hei ght shape)))

08/01/05

But Structure Accessors are not
Generic

e S-rectangle-width 1s an ordinary lisp function

e This 1s an error:

(defmethod s-rectangle-width :around ((shape s-rectangle))

.)

08/01/05

08/01/05

Allegro CL Certification
Program

Lisp Programming Series Level 2

Session 3.4
CLOS Elements of Style

88

Avoid typep

(Lf (typep x 'rectangle) ..) ; bad
(i1f (rectangle-p x) ..) ; good
(defmethod rectangle-p ((object t)) nil)

(defmethod rectangle-p ((object
rectangle)) t)

e Resulting code makes it easier to later adapt
the code to new classes

Avoid Slot-value

(slot-value point 'x) , bad

(point-x point) , good

o Use accessor functions instead of slot-value

e Hide data structure decisions in case you
change your mind

Avoid Multipurpose Slots

e Avoid using a slot for more than one purpose

e If you have to test the type of a slot value to
know what 1s there, then consider adding
more slots or defining more subclasses

Use Constructors

(defun make-circle (x y &key (radius 10))
(make—-instance 'circle

:X X :y y :radius radius))

e It’s a good practice to write constructor ins
* You get better arg handling

e Hide data structure decisions in case you
change your mind

Add Print-object Methods

e Printed representation should make concise
statement about object state

— point: X,y location

— stream: 1nput or output, open or closed
e Usetul for debugging

e Especially useful when there are many
instances in a big trace history

Use EQL Methods With Symbols

(defmethod handle-event ((event (eql 'redraw)) window)

)

(defmethod handle-event ((event (eqgl 'iconify)) window)

)

e Like a case statement but more modular and
more easily extended

* The drawback 1s that method dispatch 1s a bit
slower

Peter Norvig’s Lisp Style Maxims

e Be specific
— SETQ 1s more specific than SETF

e Use abstractions
— SECOND 1s more readable than CADR

* Be concise
e Use the provided tools, don’t reinvent them
* Don’t be obscure, avoid programming tricks

e Be consistent

08/01/05 95

The Goal

 Reduce a complicated problem to a
collection of easy-to-understand procedures

* Good decomposition leads to
— Faster implementation

— Fewer bugs

— Easily maintained source code

training @franz.com

http://www .franz.com/lab/

