Allegro CL Certification

Program
Lisp Programming Series Level 2

Session 2.3.1
CLOS dynamics and
CLOS Performance

08/01/05

Some CLOS Review

 Methods allow customizing behavior to
classes.

* You can define primary methods:
(defmethod foo ((argl classl) (argZ2 class2)..) ..)

 You can define :before, :after, and :around

methods. This define a before method:

(defmethod foo :before
((argl classl) (arg2 class2)..) ..)

08/01/05

Method types

e All before methods run first, most-specific
first. Before methods are typically used for
argument checking and setup

e Then the most-specific primary method runs
(call-next-method will run next-most-specific
primary method).

e Then all after methods run, least-specific
first. After methods do cleanup, recording,
etc.

08/01/05 3

Around methods

e Around methods wrap around all other
methods. The most-specific :around method
runs. Addition :around methods are run and
the before/primary/after method run only 1f
(call-next-method) 1s used. :around methods
allow 1nserting logic that will determine
whether methods run at all.

08/01/05

Methods allow any level of
complexity

* Mixing before, after, primary, and around
methods appropriately, along with defining
subclasses and superclasses appropriately,
programmers have great flexibility 1n
determining behavior.

08/01/05

CLOS 1s dynamic 1

 Methods (even new generic functions) can be
defined at any time, even while and
application 1s running.

 Methods and modifiable aspects of generic
functions can be redefined at any time.

 Note that if methods named foo are defined

(fmakunbound 'foo0)

destroys all methods and the generic function
(1n case you want to start over).

08/01/05 6

CLOS 1s dynamic 2

* You can change the class of an instance at
any time:
cg-user(7): (defclass cl ()
((x :initform 10 :initarg :x)
(y :initform 55 :initarg :x)
(z :initform 99 :initarg :z)))
#<standard-class cl>

cg-user(8): (defclass c2 ()
((a :initform "slota" :initarg :a)
(y :initform "sloty" :initarg :y)
(c :initform "slotc" :initarg :c)))
#<standard-class c2>

08/01/05

Changing class of an instance 2

cg-user(9): (setg ins (make-instance 'cl))
#<cl @ #x20b6762a>

cg-user(1l0): (list (slot-value ins 'x)
(slot-value ins 'y)
(slot—-value ins 'z))

(10 55 99)
cg-user(ll): (change-class ins 'c2 :a 777)
#<c2 @ #x20b6762a>

cg-user(l2): (list (slot-value ins 'a)
(slot-value ins 'y)
(slot-value ins 'c))

(777 55 "slotc")
cg-user(1l3):

08/01/05

Performance Considerations

e How does one decide when to use:
— Generic function versus function

— Standard-class, structure-class, built-in-class

e Appropriate comparisons require looking at
— Required functionality in your program
— Availability of functionality in different styles
— Cost of functionality in different styles

08/01/05

Measuring Performance

(defun try ()
(time
(dotimes (I 100)
(make—-instance “‘point :x 1 :y 1))))
(compile “‘try)
e Choose a number of iterations such that the
loop takes at least a second

e (Calculate iterations per second

* Replace make-instance with other things

08/01/05

10

Make-instance Performance

 The compiler does a lot at compile time to
optimize make-instance

e Avoid creating instances if you don’t have to
because

08/01/05

1t increases the size of the process and may cause
needless paging

it increases the frequency and duration of
garbage collection

Instance Creation

e Make-instance supports

— Multiple inheritance and initarg defaulting, making it
very flexible

— Automatic combination of initialization protocols

— Layered protocols

e Making a struct 1s similar to making a vector

— structs are smaller and can be created faster than class
Iistances

08/01/05

Pertormance Comparison

(defstruct shipl
(x-position 0)
(y—position 0))

(defclass ship2 ()
((x-position :initform 0 :initarg :x-position)
(y-position :initform 0 :initarg :y-position)))

; 24 bytes per shipl.
; (make-shipl) 200,000 per second
defun tryl (n)

(time (dotimes (i n) (make-shipl))))

Ll
4
L
4
(

; 48 bytes per ship2
; (make-instance 'ship2) 200,000 per second,
; except for the first one.
defun try2 (n)
(time (dotimes (i n) (make-instance 'ship2))))

L
4
L
4
L
4
(

08/01/05

Unoptimized Make-instance

;; (make-instance class—-name) 20,000 per second
(defun try3 (n class—name)
(time (dotimes (i n) (make-instance class—-name))))

08/01/05

Slot-value Performance

e Slot-value can be as fast as two arefs

— First aref looks up position of slot value 1n
instance vector

— Second aref accesses the instance vector

e Standard slot reader, writer, and accessors
are nearly as fast as slot-value

08/01/05

Slot-value Vs. Structure Accessors

e Standard-class slot-value supports:
— Multiple inheritance
— Class redefinition
— Change-class
— Error-checking (type, bound)

— Specialization 1n metaclass (slot-value-using-
class)

e Structure accessors do not support these

08/01/05 16

Slot-value Vs. Structure Accessors

e Defstruct accessors compile in-line

— Single memory reference

e Slot-value 1s optimized when object type can
be inferred
— But not completely 1n-lined (instance-read-1)

— 2 memory references

e Unoptimized slot-value 1s quite slow

08/01/05

Pertormance Comparison

77 2.2 million struct accesses per second
(defun try4 (n)
(let ((ship (make-shipl)))
(Time (dotimes (i n) (setqg *junk* (shipl-x-position ship))))))

77 700,000 slot accesses per second
(defun try5 (n)
(let ((ship (make—-instance 'ship2)))
(Time (dotimes (i n) (setg *junk* (slot-value ship 'x-position))))))

08/01/05

Standard-class Slot Accessors

e Slot accessor functions are generic functions
— Additional methods can be defined

— Performance 1s stmilar to slot-value when there
are no additional methods

e Defstruct accessor functions get compiled in-
line
— Callers must be recompiled if the struct is
redefined

08/01/05

Accessor Performance

(defclass buick ()
((color :initform :red :accessor buick-color)))

(defun try7 (n)
(let ((buick (make-instance 'buick)))
(Time (dotimes (i n)
(setg *junk* (buick-color buick))))))

08/01/05

Generic Function Call

(defun seize (lock)
(etypecase lock
(simple-lock . . .)
(null-lock . . .)))

versus

(defmethod seize ((lock simple-lock)) . . .)
(defmethod seize ((lock null-lock)) . . .)

e Should be roughly equivalent except for the first call to
SEIZE.

08/01/05

21

Pertormance Comparison

(defun invert (value) (not wvalue))

;77 3.5 million calls per second
(defun try8 (n)
(time (dotimes (i n) (setg *junk* (invert t)))))

(defmethod nada (value) (not wvalue))

77 3.5 million calls per second
(defun try9 (n)
(time (dotimes (i n) (setg *junk* (nada t)))))

(defmethod flip ((value ship2)) (not wvalue))
(defmethod flip ((wvalue buick)) (not wvalue))

77 1.8 million calls per second
(defun tryl0 (n)
(let ((ship (make-instance 'ship2)))
(time (dotimes (i n) (setqg *junk* (flip ship))))))

-

Fr:

08/01/05 22

Generic Function Call

* Suppose one represented objects using
sequences, with symbols for type codes

(defun seize (list-lock)
(if (listp list-lock)
(ecase (car list-lock)
(simple-lock . . .)
(null-lock . . .))
(error . . .)))

* Slower than either typecase or GF dispatch
LN

08/01/05 23

Avoid Keyword and Optional
Arguments

* Function calling and method dispatch 1s
much slower

e Much more work at run time to analyze the
argument list

08/01/05

Pertormance Comparison

(defmethod negate ((value ship2) &key arg) (not value))
(defmethod negate ((value buick) &key arg) (not wvalue))

;7 300,000 calls per second
(defun tryl0 (n)
(let ((ship (make-instance 'ship2)))
(time (dotimes (i n) (setqg *junk* (negate ship))))))

;7 Remove keyword processing to increase performance by
;; a factor of 6x.

08/01/05

Method Dispatch

 Method dispatch 1s usually slow the first time
(unless there 1s only one method)

e For a given set of argument types, the
applicable methods are cached

 CLOS generally builds the dispatch
incrementally, making for a slow start

08/01/05

Multiple Dispatch

(defmethod addl ((a fixnum) n) (+ a n))
(defmethod addl ((a single-float) n) (+ a n))

;77 1.1 million per second
(defun tryll (n)
(time (dotimes (i n) (setqg *junk* (addl 2 1)))))

(defmethod add2 ((a fixnum) (n fixnum)) (+ a n))
(defmethod add2 ((a single-float) (n single-float)) (+ a n))

;7 625 thousand per second

(defun tryl2 (n)
(time (dotimes (i n) (setqg *junk* (add2 2 1)))))

.\3.
Fr

08/01/05 27

Performance - Use Defstruct
Rather Than Defclass

e In performance critical code you are better
off without objects and the overhead of
message dispatch.

e Only do this if metering determines 1t 1s
necessary.

08/01/05

08/01/05

Allegro CL Certification
Program

Lisp Programming Series Level 2
Session 2.3.2

Garbage Collection

29

Why Have Garbage Collection

"explicit memory management has proved to be
a fruitful source of bugs, crashes, memory
leaks and poor performance.”

Java Language Specification

"When (not if) garbage collection becomes
available, we will have two ways of writing C++
programs.”

Bjarne Stroustroup

08/01/05 30

What 1s garbage collection?

e Automatic reclamation of no longer needed
memory

* An object can be freed if no live object points
to 1t

e Objects are not freed immediately

08/01/05

Lisp Spaces

e Lisp heap space 1s divided into two parts
— Newspace - where new objects live

— Oldspace - where old objects live

 Newspace 1s managed with scavenges

— Newspace 1s divided into two halves, and only
one half 1s in use at any time

— When that half gets full, all live objects are
copied to the other half and packed consecutively

e garbage 1s left behind

— Scavenges are normally fast and not noticeable
08/01/05 32

Tenuring to Oldspace

e The “age” of an object 1s tracked by counting
the number of scavenges it survives

— called 1ts “generation”

 When an object reaches a certain age, 1t 1S
moved to oldspace

— called “tenuring” the object

* Oldspace 1s not garbage collected very often

— objects that survive a while are likely to survive a
long while, perhaps forever

08/01/05 33

Garbage 1n Oldspace
 Managed by a Global GC

* Only performed occasionally, but all other
processing and signal handling stops

 Duration 1s noticeable

* Frequency and behavior of a global GC can
be controlled

— 1t must be controlled when responding to events
in real time, such as with an equipment controller

e (Frequency and behavior of the scavenger
cannot be controlled)

08/01/05 34

Oldspace and Newspace Grow

 When oldspace gets full, an additional
oldspace segment 1s carved out of newspace

— many oldspaces

 When newspace 1s full, it may

— grow Incrementally by asking for a large block of
memory from virtual memory

— become oldspace and create a whole new
newspace

08/01/05

Information on Memory Spaces

SER(3): (room)
nrea address(bytes) cons symbols other bytes
8 bytes each 24 bytes each

(free:used) (free:used) (free:used)
op #x205e0000
ew #x204c0000(1179648) 710:3366 239:15 986496:100392
ew #x203a0000(1179648) -——= ————— ————-
D1d #x20000d58(3797672) 815:54211 231:14007 2122272:883616

;One newspace, one oldspace

08/01/05

Recommendation

 Tweaking the garbage collector settings
should be done as a last resort

* The best solution 1s to limit garbage creation

e Interactive programs can trigger a Global GC
at convenient times to improve response
times

08/01/05

Triggering a Scavenge

e Triggering a scavenge
— (excl:gc)
* Finding out when scavenges happen
— (setf (sys:gsgc-switch :print) t)
e Determining scavenge efficiency
— (setf (sys:gsgc-switch :stats) t)
— Efficiency should typically be at least 75%

e less than 25% of your time 1s spent scavenging

08/01/05

38

Triggering a Global GC

* Triggering a global gc
— (excl:gc t)
e If :print and :stats switches are true (previous

slide), you can see how many bytes are
tenured

08/01/05

Basic Control

e Excl:*global-gc-behavior™

— :auto - gc automatically after exceeding threshold
(excl:*tenured-bytes-limit™*)
— :warn - warning only after exceeding threshold

— :auto-and-warn - warning and gc after exceeding
threshold

— nil - no warnings and no gc
— (300 2.0) - gc after

e threshold 1s exceeded and lisp 1s 1dle 300 seconds

e 2.0 times threshold 1s exceeded
08/01/05 40

Advanced Control

(setg excl:*tenured-bytes-limit* 10000000)

— Automatic global gc after 10 Mb (default 1s 5)
— Don’t set it below 1 Mb

(setf (excl:gcgc—-parameter :generation-spread) 10)

— objects that survive 10 generations are tenured

— default 1s 4

(setf (excl:gsgc—-switch :gc-old-before-expand) t)

— before expanding oldspace, do a dynamic gc in
case the expansion 1s not necessary

08/01/05

Advanced Control

 When building a lisp application (excl:build-
lisp-image)
— you can set the 1nitial size of oldspace and
Nnewspace

e Use excl:resize-areas to restructure oldspaces
and newspaces 1n a running 1mage

08/01/05

Immediate Tenuring

e (excl:tenuring (excl:load-system 'macsyma))

e All objects within the scope of forms will go
straight 1nto oldspace

* Avoids work for the scavenger

08/01/05

Weak-Vector

e (excl:weak-vector length)
— Creates a vector
— The GC will “collect” elements that have no other
references (element becomes NIL)
e (excl:schedule-finalization x function)
— GC applies function to x at the point x is 1dentified as
garbage
e Use together to verify that the GC 1s collecting
large objects you think should be collected

08/01/05 44

GC Errors

e STORAGE-CONDITION

— A type of error condition 1s signalled when Lisp
cannot get more memory from the operating
system

— Normally, lisp does not immediately exit, since
there 1s usually a bit of space left in newspace

— Only real solution 1s to add virtual memory or
kill other processes competing for virtual
memory

08/01/05

GC Errors

e Corrupted memory will cause the GC to
signal a fatal error and exit lisp immediately

e There 1s no recovery

e Typically caused by
— bugs 1n a foreign function interface

— highly optimized code whose type declarations
were violated

08/01/05

The GC and Foreign Code

e Pointers to Lisp objects can be passed to
foreign code (C, C++, Fortran, ...)

« BUT if the GC runs, the object may move,
invalidating the pointer

e Typical symptom 1s a SEGV in foreign code
that 1s otherwise working

08/01/05

The GC and Foreign Code

e Remedies:

— Prevent the GC from running when calling
foreign code
e Define foreign function with :release-heap :never
option
— Allocate objects 1n static space
* using keyword arguments to ff:allocate-fobject

 using the function excl:make-static-array

08/01/05

08/01/05

Allegro CL Certification
Program

Lisp Programming Series Level 2
Session 2.3.3

Conditions and Error Handling

49

Unavoidable Error Conditions

e Not all errors are bugs, for example database
1s down or permission to save file 1s denied

e Production code must keep the user out of
the debugger

e Trapping for errors and providing users with
options for continuation or recovery 1s much

better
Tl

08/01/05

Defensive Programming

e Assume you (and your peers) will make
programming €rrors

* Write functions that can recognize and
handle bad input

— Prefer etypecase over typecase and ecase over
case when the set of cases 1s fixed

— Use ASSERT- and CHECK-TYPE-like forms at
key points where performance 1s not critical

08/01/05 51

Signaling Errors

e Use the function ERROR

— (error “connection to server ~A 1s down’ server)

e Use the function CERROR

29 ¢¢

— (cerror “continue anyway’’ “‘connection to server

~A 1s down” server)

e Use the function SIGNAL

— First argument names a class, the rest of the
argument list 1s used 1n a call to make-instance

— (signal ‘network-down :type :LAN)

08/01/05 52

Signaling Errors

e Use the function CHECK-TYPE or ASSERT

(defun nth-character (n s)
(check-type s string)
(check-type n fixnum)
(assert (<= 0 n (1- (length s))))
(char s 0))

08/01/05

Signaling Errors

e (break)

e Put it in your source code temporarily

e Causes you to explicitly go directly into the
debugger, without being intercepted by error
handlers

08/01/05

Signaling Warnings

e (warn “You are running out of table space”)

e Ordinarily, prints the message to *error-
output™® and returns NIL

e Used for “benign” or
e (setq *break-on-signals™ t)
— In this case, WARN behaves like BREAK

08/01/05

Error Conditions are Objects

e Different errors have different types
e Represented as a CLOS object

e Error classes defined using
DEFCONDITION

e Error handlers usually apply to specific error
classes

* Handlers on the class ERROR apply to all
error conditions "“*

08/01/05 56

Ignoring Errors

e Easy to understand the concept but only sometimes
a good 1dea

(defun safe-division (a b)
(ignore-errors (/ a b)))
(safe-division 4 2)
2
(safe—-division 4 0)
NIL
#<DIVISION-BY-ZERO Q@ #x204d9562>

08/01/05

More on 1gnoring errors

(defun safe-division (a b)
(if (zerop b) nil (/ a b)))

Ignore-errors useful when doing something useful but not

necessary, and in the code fragment (read-user-init-file not
defined here)

(multiple-value-bind (a b)
(ignore—errors (read-user-init-file))
(if b (format t "Problem reading init file, ~
Skipped.~%")))

08/01/05

58

Error Handling

(defun slope (x1 yl x2 y2)
(/ (- y2 yl) (- x2 x1)))

(defun print-slope (x1 yl x2 y2)

(handler—-case

(print (slope x1 yl x2 y2))

(division-by-zero ()
(print :infinite))
(error (c)
(princ c))))

(print-slope 0 5 0 10) —>
(print-slope 0 5 NIL NIL)

08/01/05

tinfinite

—> “nil is not a number”

59

Example User-Defined Condition

(defcondition network-down (error)
((network—-type :initarg :type))
(:report

(lambda (condition stream)

(format stream
“The ~A network is down”
(slot-value condition

‘network-type)))))
(defun check—-network ()
(or (test—-local-area—-network)
(signal ‘network-down :type :LAN)))

08/01/05 60

Condition class

e errors are a subclass of condition
e you can signal a condition

e cach signal results in a make-instance of one
object of the particular error or condition
class

e system will search for a handler for that
condition

* handler of last resort 1s the debugger

08/01/05 61

“Serious’ conditions

e The class ERROR 1is a subclass of SERIOUS-
CONDITION

e there are other conditions which are error-
like called serious-conditions

* ignore-errors specifically doesn’t ignore
them

e example: stack overtlow, or running out of

virtual memory Sl S
Fiadly

08/01/05

Handling Errors Sometimes

(defun database-connect (name)
(loop
(catch :retry
(handler-bind ((network-down #‘fix—-net))
(return
(open—-database (find-database name)))))))

(defun fix—-net (condition)
;7 If this function ever returns,
;7 you get debugger. This happens if
;; the network is not fixable.
(when (network-is—-fixable)
(fix—network)
(throw :retry)))

08/01/05

handler-bind vs. handler-case

e handler in handler-bind run in context of
error

— can decline to handle the condition
— OR can fix things up and continue

e handler 1n handler-case runs when stack
already unwound

— In this case, the handler always applies, 1t cannot
decline to handle the condition

08/01/05

restarts

e A restart establishes a means to recover from
error conditions

* You see them as “‘continue” options when
you land in the debugger.
e Restarts differ from error conditions in that

— Invoking a restart explicitly transfers control to
another part of the program, as it doing a

THROW

— Corrective action or recovery 1s implicit in the
act of invoking a restart

08/01/05 65

With-simple-restart

(with-simple-restart (abort "Close Connection")
(process—-header socket (read-header socket)))

e First arg 1s symbol naming the restart

e Second arg 1s documentation string

« ABORT 1s a standard restart, but you can
have others of your choosing

08/01/05

Invoking Restarts

(defun abort-if-abortable (wvalue)
(when (find-restart ‘abort)
(invoke-restart ‘abort wvalue)))

e This 1s similar to the lisp function ABORT,

except ABORT signals an error 1f there 1s no
restart named ABORT.

e “Simple” restarts are exactly like throw and

catch except that you can test for them with
FIND-RESTART.

08/01/05 67

restart-case

e establishes a context in which one or more
restarts are active

e (restart-case <form> <restarts>)

e anonymous restarts (name 1s NIL) can only
be taken by debugger

e named restarts -- handler can call find-restart,
Invoke-restart

08/01/05

*debugger-hook™

e Global variable, normally its value 1s NIL

* You can set 1t to point to a function of two
arguments
— First arg receives an error condition
— Second arg 1s value of *debugger-hook*™

e Immediately prior to landing in the debugger,
this function 1s called

— You might use it to pop up a menu of restarts to
the user (a “menu debugger”) rather than letting
the user land 1n the full-blown debugger

08/01/05 69

08/01/05

Allegro CL Certification
Program

Lisp Programming Series Level 2

Session 2.3.4
Interface Development with IDE

70

IDE - Interface Dev. Env.

e Graphical user interface for developing user
interfaces

* You create windows, dialog boxes, menu
bars with the user interface

* You use a text editor to add methods that
customize the behavior of your application

08/01/05

CG - Common Graphics

* A package of functions for creating windows

and controls, drawing graphics, and receiving
and generating events

e Available only on Windows

08/01/05

Projects

e Collects all files associated with an application

e Contains dialogs and other windows that are part of
the user interface

e Dialogs and other windows are designed with forms
e Create a New Project (File | New Project)

* Project Manager displays information about a
project

08/01/05 73

Forms

e Add a form with File | New Form

You are asked what kind of window. Choices
(initially bitmap-window, frame-window,
dialog, text-edit-window, etc.) incllude new
window classes you have created.

e Always create your own subclasses of
windows so your methods affect your

windows only <l
Fiudly

08/01/05

When you have a new form

* Double-click to inspect it with an inspector
window

e Typically change the class, name, and title

e Also menu, scrollbars, background- and
foreground-colors

08/01/05

Typical window class definition

(defclass paint-buffer (frame-with-single-child)
())

(defclass paint-pane (bitmap-pane)
((ischanged :initform nil :accessor buffer-ischanged)

file :initform nil :accessor buffer-file)

objects :initform nil :accessor buffer-objects)

(
(
(
(selections :initform nil :accessor buffer-selections)
(mouse-x :1initform O :accessor mouse—x)

(

mouse-y :initform 0 :accessor mouse-y)))
;7 Associate the two

(defmethod default—-pane-class ((obj paint-buffer))

'paint-pane)

08/01/05 76

Windows Messages

e Operating system sends your application
messages via SendMessage()

— Key press or button click

— Window needs redisplay

— Color palette has changed

e Common Graphics trans]

lates most messages

into generic function call
into

08/01/05

s that you can hook

Redisplay-Window

(defmethod redisplay-window ((pane paint-pane)
&optional box)
;; This method is called automatically whenever the
;; window needs to be redisplayed.
(cg:erase—-contents-box pane
(or box (cg:page-box pane)))
(dolist (object (buffer-objects pane))

(draw—object object pane))
(dolist (object (buffer-selections pane))

(highlight-object object pane)))

08/01/05

Some Event Handler Functions

e cg:redisplay-window, cg:erase-window

e cg:resize-window, cg:move-window

e cg:mouse-left-down, cg:mouse-left-up, etc.
e cg:virtual-key-down

e cg:user-close

e cg:mouse-moved

e Must first create your own window subclass
to specialize on

* You can call them yourself

08/01/05

User-Close

(defmethod user—-close ((window paint—-pane))
(1f (not (buffer-ischanged window))
(progn (call-next-method)
(user—-close (parent window)))

(case (pop-up-message-dialog window "Close"
"The file has changed. Save the changes?"
warning-icon "Yes" "No" "Cancel")

(1 ,;,; Save
(call-next-method)
(when (buffer-ischanged window)
(user—-save—-file window))
user—-close (parent window)))

(

(2 ;; Discard
(call-next-method)
(user—-close (parent window)))

(3 ;; Cancel
nil))))

08/01/05

Common Dialog Boxes

e Pop-up-message-dialog
— Yes/No/Cancel type dialogs
— Warning/abort/info icons
— One to four buttons

e Ask-user-for-new-pathname

— Used for Save As type commands

e Ask-user-for-existing-pathname

— Used for Open type commands

08/01/05

invalidate

e (Call “invalidate” to force a window or
component to redisplay

* Invalidate calls redisplay-window
 Don’t call redisplay-window directly

08/01/05

Intro To Standard Widgets

e Drag and Drop “GUI builder”

e Use “events’” to add behavior

08/01/05

Standard Widgets, cont’d

e For the most part, properties like size and
position can only be set during the design
stage

 You can (setf RANGE) and (setf VALUE) at
run time. Use cg:find-component to get the
appropriate object.

08/01/05

Find-component

e Given a window or dialog box, finds the
component having a certain name

e Relies on the “name” property of a
component

* The name property should be a symbol

e Tip: 1if you rename your component, you
have to update the name 1n the various calls

to find-component. Ll .
Tl

08/01/05

Component Events

* Double-click on a widget to bring up its property
sheet

e Select the “Events’ tab

e Select the event of interest (on-click, on-change, on-
mouse-1n, etc.)

e Note that it writes an empty event handler for you
e Events naming convention:
— formname-gadgetname-eventname

— forml-checkbox1-on-change
— on-change args: (widget newvalue oldvalue)

e on-change and on-click are the main ones to worry
osoabout 86

Some notes on the grid-widget

* The grid-widget 1s a complex table or
spreadsheet widget written wholly 1n Lisp
(does not correspond to a standard Windows
widget)

e Itis very powerful and thus very complex

* There are examples in CG Example set (click
on Help | CG Examples S O
; ; Tl

08/01/05 87

 New documentation sent to you

Must make appropriate subclasses

e Step one 1s making your own subclasses of
all relevant grid-widget classes (such as grid-
widget, grid-row, grid-column, etc.)

e or1d 1s divided 1nto sections (blocks of rows
and columns). Each section 1s customizable.

e A cell 1s the intersections of a row and
column. It 1s not an 1ndividual lisp object.
Instead, methods specialized to the row and
column define behavior for the cell.

08/01/05 88

Rows and columns

 Rows and columns are known collectively as
subsections.

e (rid sections and subsections can be
customized with many properties (resizable,
border-color, scroll-bars, movable, deletable,
etc.)

08/01/05 89

Displaying data

e Read-cell-value gets the value for a cell
(whatever kind of lisp object it 1s). The cell 1s
identified by its row and column.

e Draw-cell displays data in a cell. It 1s called
automatically whenever the cell 1s uncovered
or invalidated. You write methods for it but
do not call 1t directly (you call invalidate-cell
instead, for example).

e Default draw-cell 1s princ-to-string.

08/01/05 90

Responses to events

e Cell-click methods respond to mouse clicks.

e Write-cell-value modifies a value 1n a cell.

08/01/05

91

Higher level functions

e Could provide data-object method for each
row and data-reader method for each column
(row represents an employee and column
represents some aspect, like hire date or
salary). Default read-sell-value calls data-
reader.

08/01/05 92

Grid-widget examples

Three examples provided:
* Simple color editor
e Replicated editable-text columns

 Complex employee example

08/01/05

93

Some notes on AllegroServe

e AllegroServe 1s a web application server that
allows you to create and publish web pages

 Its has two components: a web server and a
html generator

* You can create pages dynamically, using the
html generator to create a page based on
current data

08/01/05 94

Dynamic vs. static pages

e A static page has content which changes
rarely and in any case does not depend on
current data or user input (welcome pages,
product listings, other static data listing)

e A dynamic page 1s generated in real time
based on current information and user data
(search results, shopping carts)

08/01/05

95

Allegro Webactions adds more
dynamic capability

 Webactions allows using special html tags
which trigger running Lisp functions

e This allows a html designer to call functions
written separately by a programmer

08/01/05

96

AllegroServe and Webactions
documentation and tutorials

e Available on Franz Inc. website
(www.Iranz.com/support/documentation/7.0/
doc/introduction.htm, search for aserve and
webactions)

e Also available for 6.2

08/01/05 97

08/01/05

training @franz.com

http://www .franz.com.lab/

T

98

