

555 12
th

 Street, Suite 1450
Oakland, CA 94607

510-452-2000
www.franz.com

AllegroCache  ∧∧∧∧AI Built-in, All the Way Down

Copyright  2005 Franz Inc. 2 of 15 AllegroCache White Paper 20051012

Table of Contents

Complex Applications Are Pervasive Today.. 3

What Is AllegroCache ... 5

AllegroCache System Architecture ... 5

AllegroCache Extension to Lisp... 7

AllegroCache as an Intelligent Database System... 9

AllegroCache Performance Benchmarks ... 10

When to use AllegroCache... 12

Initial Validating Applications.. 13

Platforms Supported.. 15

Product Configuration ... 15

Summary... 15

Copyright  2005 Franz Inc. 3 of 15 AllegroCache White Paper 20051012

AllegroCache  AI Built-in, All the way down

AllegroCache is a high-performance, dynamic object caching database
system. It allows programmers to work directly with objects as if they were in
memory while in fact the object data is always stored persistently. This
greatly simplifies programming tasks, enabling programmers to focus on
solving the complex problems at hand. It supports a full transaction model
with long and short transactions, and meets the classic ACID requirements
for a reliable and robust database. It automatically maintains referential

integrity of complex data objects. Furthermore, AllegroCache provides 64-
bit real-time data caching on the application memory to achieve very high
data access throughput by applications over as large a data set as
necessary.

In this white paper, we will first articulate the growing needs for such an

object database, then describe technical characteristics of AllegroCache
especially from the viewpoints of Lisp applications, discuss when and how to

employ AllegroCache for complex intelligent software applications, and

finally highlight a few initial applications using AllegroCache.

Complex Applications Are Pervasive Today

The problems we are facing today are of unprecedented complexity and
scale. In the commercial sector, businesses need to deal with the
accelerated pace of changes brought on by the Internet. E-commerce sites
need to provide context-relevant solutions to millions of customers each with
their own preferences and purchasing habits. Banks must constantly monitor
millions of global financial transactions to detect financial fraud and money
laundering. In the government sector, agencies fighting terrorism must deal
with an explosion of intelligence and event alerts, and the signal-to-noise
ratio is getting worse as more data is collected. In the scientific community
the problems are just as daunting – consider Bioinformatics, drug discovery,
GIS, and Genealogy. Complexity is no longer the realm of scientific research
but pervade every sector today. (See figure 1)

Data from J.J.Porta of IBM, 2003

Telco

Manufacturing

Energy

Financial

Services

Life

Sciences
Government

Media
Seismic

Analysis

Cancer

Research

Drug

Discovery

Protein

Folding

Pathway

Modeling

Derivatives

Analysis

Portfolio

Risk

Analysis

Fraud

Detection

Market

Modeling

Product

Design

Finite

Element

Analysis

Failure

Analysis

Bandwidth

Modeling

Multiplayer

Gaming

Digital

Rendering

Homeland

Security

DOE, DOD

Research:

(physics,
weather)

eGovennment

Figure 1. Complex Applications

Copyright  2005 Franz Inc. 4 of 15 AllegroCache White Paper 20051012

For example, in the field of life science and medicine, researchers have long
recognized the significant clinical heterogeneity among tumors, even though
they all look similar using standard pathology tools. With Microarrays, those
tumor tissues previously considered similar now clearly exhibit distinct
expression patterns, thus rendering systematic tumor classification finally
possible. (See figure 2)

Unclassifiable Data Classifiable Data

Figure 2

However, to understand the biology and the disease process behind each
expression pattern in order to devise an effective medical treatment requires
correlating it with information and knowledge from many other data sources
(such as gene ontology, protein databases, metabolic pathway databases,
etc.) As a result, a great promise ends up creating an even greater
computational challenge.

Such is not unique to the life science field. While relational database and the
SQL query language have in the last 20 years revolutionized corporate data
processing and will continue to play their key enterprise roles, they no longer
suffice to handle today’s complexity. This is so because, in most complex
cases, the data contains deeply nested recursive structures and active data
slots that cannot be easily fit into a relational data model. Similarly,
applications trying to reason over such data sets frequently need to perform
recursive queries on them. Imagine queries like the one below to search for
the origin of a suspicious financial transaction shrouded in a convoluted
transaction web:

“Transaction-origin (X,Y) :- Transaction-from (X,Y);

Transaction-from(X,Z), Transaction-origin (Z,Y).”

It is hard to do this query straightforwardly in SQL. Further complicating the
situation is the constant need to cross-reference over very large amounts of
data. We need an object model with in-memory caching on the application
level to supplement existing relational databases if progress is to be
achieved within a reasonable time frame.

Copyright  2005 Franz Inc. 5 of 15 AllegroCache White Paper 20051012

What Is AllegroCache

AllegroCache is a high-performance, persistent, dynamic object caching
system. It allows programmers to work directly with objects as if they were in
memory while in fact the object data is always stored persistently. It supports
a full transaction model with long and short transactions, and meets the
classic ACID requirements for a database. It maintains referential integrity of
complex data objects. For example, a pointer to a deleted object is
automatically and silently changed to nil, which is essential for frame-based
knowledge representations with an extensive pointer network. Furthermore,

AllegroCache provides 64-bit real-time data caching on the application
memory to achieve very high data access throughput by applications over as

large a data set as necessary. The table below compares AllegroCache to
other currently popular database technologies.

 RDB OODB AllegroCache

Application Level Caching √ √

Dynamic Object Schema Evolution √

Garbage-collected, Multi-threaded, Distributed √

AI Built-in, all the way down √

AllegroCache runs on Windows, Unix and Linux for both 32-bit and 64-bit
architectures. It works fine on traditional 32 bit Windows and Unix system but
really shines on multiprocessor 64 bit systems with large memories.

With respect to its application, we can look at AllegroCache in two ways. We
can view AllegroCache as a high-performance, application-level caching
system with persistent data store. Alternatively, we can look at AllegroCache
as a natural extension to Common Lisp. From such a perspective,
AllegroCache is a powerful, persistent object-oriented layer on top of the
Common Lisp Object System (CLOS). Effectively, AllegroCache turns Lisp
into a database and database language for tomorrow.

AllegroCache System Architecture

AllegroCache provides both a single user and multi-user environment. In the
multi-user environment, different users (or processes) on different processors
can access the same database over the network.

Copyright  2005 Franz Inc. 6 of 15 AllegroCache White Paper 20051012

A typical configuration with multiple users would be:

This picture shows multiple machines talking to one machine that holds a
large cache. The two machines at the top are clients that retrieve their
objects through a cache-client interface.

You can also use AllegroCache in single-user mode. In this case the
application, the cache and the b-tree interface all reside in one process.

One of AllegroCache’s unique programming features for Lisp application
developers is that the Lisp programming language is the database query and
manipulation language. In essence, with AllegroCache you program your
application with persistent data as if it were in memory without having to

Application Code

Cache Client Interface

Local

Object

Cache

Cache Server Interface

Cache

Application Code

Cache Client Interface

32bit / 64 bit
Unix / Linux /Windows

32 bit / 64 bit
Unix / Linux / Windows

� Clients and Servers in same
or different processors

� Data caching in local
application memories

Local

Object

Cache

Application Code

Local

Object

Cache

Copyright  2005 Franz Inc. 7 of 15 AllegroCache White Paper 20051012

marshal data in and out of the database. The machinery behind
AllegroCache will automatically ensure such data persistence occurs.

This is significant because it resolves one of the hairier aspects of modern

application programming  the impedance mismatch between programming
languages and the database access languages (mainly SQL and its
derivatives). This mismatch occurred because accessing relational
databases became common in applications after programming languages
had been standardized and were in wide use. Therefore, almost all modern
programming languages use separate database access libraries for
accessing RDBMS data within applications. Not only does the syntax and
semantics of the two languages likely differ (sometimes subtly), native data
types within a programming language are often incompatible with the
database data types. The need to constantly map one data type to another
and switch language semantics within a single application is inevitably “error-
prone and frustrating.”

1

Lisp, being a functional language with extremely simple syntax, is able to
extend itself (with new Lisp macros to handle database transactions) to be
the native database access language without any impedance mismatch.
Whatever data mapping (marshalling) is necessary is totally hidden from
programmers using the standard CLOS class mechanism with a special new
metaclass. AllegroCache with the Lisp programming interface essentially
alleviates from programmers the task of having to program special code for
persistent data while writing applications.

This is akin to the advent of virtual memory (VM) in the 70’s that relieved
programmers the headache of having to overlay application code to cope
with the limited RAM memory space.

AllegroCache Extension to Lisp

As part of AllegroCache, small syntactical extensions to Allegro CL and an AI
query language are added. These extensions blend seamlessly to the Lisp
language. Some specific programming interfaces in Lisp are described
below.

(1) Metaclass: database-class

By using this new database-class metaclass in an object class definition,
all its instances are automatically stored on disk in a database. We call
these instances persistent instances. The power of this concept is that
you as the Lisp programmers can work with CLOS objects as if they
were all in memory.

(defclass person ()

 ((name)

 (address))

 (:metaclass persistent-class))

(2) Unique object identifiers

Every instance created for a class of database-class will have an object
identifier (oid) which is guaranteed to be unique and will never change
during the lifetime of the database. Programmers will have access to this
identifier so that objects can be retrieved or deleted based on this oid.

1
 See Joel on Software http://www.joelonsoftware.com/items/2004/03/25.html

Copyright  2005 Franz Inc. 8 of 15 AllegroCache White Paper 20051012

(3) Referential Integrity

In many cases the data a program operates on is a complex graph or a
pointer network, i.e., instances pointing to other instances. When objects
are deleted, all references to those deleted objects will be automatically
changed to the nil value.

(4) Maps and Indexes

When working with a huge number of objects, you need indexing
mechanisms to enable you to quickly find a particular object. Therefore,
AllegroCache introduces the concept of a Map. A Map is a set of key-
value pair where the keys and values can be almost any Lisp type. Maps
can either live in memory only or be stored in the database. A Map can
contains 1-1, many-1, 1-many, or many-many relations. A Map where the
value is a persistent object in the database is called an Index. When
defining a class, you can specify which slots should be indexed.

(defclass person ()

 ((name)

 (age :index :any)

 (social-security :index :any-unique)

 (income)

 (father)

 (city))

 (:metaclass persistent-class))

(defclass city ()

 ((name :index name)

 (state)

 (country))

 (:metaclass persistent-class))

(5) Dynamic Class Schema Update

One of the unique features of AllegroCache is that you can redefine
classes on the fly at runtime. When your application redefines class
definitions at runtime, AllegroCache will automatically and lazily change
existing instances when and only when the application accesses them.
And, yes, every instance has a class-version number.

(6) Lisp as the Retrieval Language

In principle you don't need a specialized retrieval language to work with
persistent CLOS instances. As described previously, Lisp programmers
view the database as if all the instances are in memory. Therefore, you
can write your programs to operate on persistent CLOS instances as you
will do without using AllegroCache. AllegroCache, however, does
provide tools that let you loop over every instance of a particular
persistent class.

(7) Prolog as a Retrieval Language

In some cases when you work with deeply nested structures and when it
becomes too hard to remember which slots are indexed, you might want
to use a more declarative way to express your search or graph-matching
algorithms. Because AllegroCache is an orthogonal feature to the rest of
Lisp, reasoning programs that work on CLOS objects will seamlessly

Copyright  2005 Franz Inc. 9 of 15 AllegroCache White Paper 20051012

work with AllegroCache. For example: you can easily use the built-in
Prolog in ACL to reason over a set of CLOS objects. Certain changes
are made to ACL Prolog so that it works better with AllegroCache. First,
some syntactic sugar is added so that queries over CLOS objects read
much better, and Prolog is made aware of indexes that might exist for
certain slots.

AllegroCache as an Intelligent Database System

Besides being a high-performance persistent object layer for CLOS,
AllegroCache is also a full-fledged database. That is, AllegroCache meets all
the production requirements of a traditional Relational Database
Management System (RDBMS).

(1) ACID Test

Every production database management system needs to achieve four
goals: atomicity, consistency, isolation and durability (ACID). Databases
that fail to meet any of these four goals is not considered reliable.
AllegroCache meets all these essential ACID requirements.

- Atomicity states that database modifications must follow an all or
nothing rule. Each transaction is said to be atomic, if one part of the
transaction fails then the entire transaction fails.

- Consistency states that only valid data will be written to the database.
If, for some reason, a transaction violates such databases consistency
rules, the entire transaction will be rolled back and the database will be
restored to a prior state that is consistent with those rules.

- Isolation requires that multiple transactions occurring at the same time
not impact each other’s execution. For example, if one issues a
transaction against a database while another issues a different
transaction on the same database, both transactions should operate in
an isolated manner. Note that the isolation property does not ensure the
order of transaction, merely that they will not interfere with each other.

- Durability ensures that any transaction committed to the database will
not be lost. Durability is accomplished through database backups and
using transaction logs to restore committed transactions in spite of any
subsequent software or hardware failures.

(2) Transactional Model

AllegroCache supports a full transactional model. You can perform long
and short transactions, commits and rollbacks, and the database
supports complete recovery if the machine should ever fail during the
commit.

(3) Concurrency

In a multi-user environment, there are two models for updating data in a
database: optimistic concurrency, and pessimistic concurrency. In
general, AllegroCache will work with the optimistic model for
concurrency. More and more modern databases support the optimist
form to gain better database performance. For example in SQL Server,
Microsoft promotes the so-called DataSet object which is designed to
encourage the use of optimistic concurrency for long-running activities
such as accessing data remotely while other users are interacting with
the data. An excerpt from Microsoft on this subject is included below for
your reference.

Copyright  2005 Franz Inc. 10 of 15 AllegroCache White Paper 20051012

From: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconoptimisticconcurrency.asp

Pessimistic concurrency involves locking rows at the data source to
prevent users from modifying data in a way that affects other users. In a
pessimistic model, when a user performs an action that causes a lock to
be applied, other users cannot perform actions that would conflict with
the lock until the lock owner releases it. This model is primarily used in
environments where there is heavy contention for data, where the cost of
protecting data with locks is less than the cost of rolling back
transactions if concurrency conflicts occur.

Therefore, in a pessimistic currency model, a user who reads a row with
the intention of changing it establishes a lock. Until the user has finished
the update and released the lock, no one else can change that row. For
this reason, pessimistic concurrency is best implemented when lock
times will be short, as in programmatic processing of records. Pessimistic
concurrency is not a scalable option when users are interacting with
data, causing records to be locked for relatively large periods of time.

By contrast, users who use optimistic concurrency do not lock a row
when reading it. When a user wants to update a row, the application
must determine whether another user has changed the row since it was
read. Optimistic concurrency is generally used in environments with a
low contention for data. This improves performance as no locking of
records is required, and locking of records requires additional server
resources. Also, in order to maintain record locks, a persistent
connection to the database server is required. Because this is not the
case in an optimistic concurrency model, connections to the server are
free to serve a larger number of clients in less time.

In an optimistic concurrency model, a violation is considered to have
occurred if, after a user receives a value from the database, another user
modifies the value before the first user has attempted to modify it.

(ref: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconoptimisticconcurrency.asp)

(4) cache consistency

Cache consistency overlaps with the concurrency issue. You (or your
application) will always see a consistent version of the database,
although your own private version may be slightly out of date (which will
be synchronized when you try to commit the transaction).

AllegroCache Performance Benchmarks

Besides functionality, scalability and performance are two critical factors in
any production database. The following benchmarks are intended to provide
an objective measures of AllegroCache in these two areas.

For scalability, we conducted three benchmarks to test its performance
characteristics with huge databases. The results look very promising.

� Test #1: We created 1 billion objects of the same object class in the
AllegroCache database without indexing. The object creation time was
more or less constant, independent of the size of the database.

Copyright  2005 Franz Inc. 11 of 15 AllegroCache White Paper 20051012

� Test #2: We created 600 million interconnecting objects (objects pointing
to one another) of 3 different object classes in the AllegroCache
database with one of the slots indexed. Again, the object creation speed
was more or less constant throughout the test, albeit slightly slower than
test #1. We then accessed 1 million objects randomly using the indices,
then retrieved the slot values of each object. We closed the database at
the end of the test.

� Test #3: We opened the database created in test #2 for update, then
redefined one of the classes (by adding one additional slot) at runtime.
We then randomly accessed 1 million objects of the changed class. As
each object was fetched into memory, it was updated automatically to
include the new slot. A value was then written into the new slot.

All of the tests were conducted on a 64-bit AMD machine with more than
2GB of RAM. The results are summarized below.

The above benchmarks demonstrated that AllegroCache could:

� Manage more than 1 billion objects reliably and with ease, even
redefining the class definition dynamically at runtime

� Manage and navigate highly associative object models with good speed
� Support ACID compliant transactions without undue performance penalty

We further benchmarked the performance of AllegroCache against a widely
used and commercially deployed relational database, MySQL. The
benchmark consists of creating 5 million CDR (Call Detail Record) objects,
reading 1 million objects sequentially (from the database on disk without pre-
caching) and reading 1 million objects randomly (through the primary-key
indices and again without pre-caching). All tests were conducted on the
same 64-bit AMD machine. Detailed results are presented in the table
below.

Again, AllegroCache fared very well against MySQL. For object (record)
creation, AllegroCache and MySQL performed at similar speed, about 6,000
objects (records) per second. Please note that the object class in this
benchmark was much more complex than that in the above scalability
benchmarks, thus the slower object creation speed. For sequential record
(object) read, MySQL performed twice as fast as AllegroCache. This is to be
expected since relational database is tuned to handle such a task. However,
for random object (record) read, AllegroCache performed 7 times faster than
MySQL, a dramatic speed-up over a popular relational database. Speed of
random read is very important when doing graph search and object pointer
chasing, for random read is typical in dealing with complex, highly
associative or network data models.

Test Indexing
of

Classes

of

Objects

Object Creation

Time

Random Object

Access Time

Process

Size

Databse

Size

1 No 1 1 billion 17.6 K objects / sec 260 MB 94 GB

2 Yes 3 600 million 10K objects / sec 13K objects / sec 2 GB 65 GB

3 Yes 3 600 million 9.7K objects / sec 2GB 65 GB

AllegroCache Benchmark

Copyright  2005 Franz Inc. 12 of 15 AllegroCache White Paper 20051012

When to use AllegroCache

When should you use AllegroCache instead of a traditional RDB? The
following examples highlight some of these criteria.

 (1) Your needs cannot be handled with SQL. For storage purposes your
data is in a relational database. However, your data actually forms a
complex graph of objects pointing to other objects. So to do any serious
query on your data, you really need to employ graph-matching
algorithms or recursive queries. This is simply too painful to do it
straightforwardly in SQL. A typical example is a genealogy database
where you want to find a common ancestor of two random persons. This
is basically a search problem and not a flat SQL retrieval. Using
languages such as Prolog (built-in within ACL) for such queries is both
natural and more efficient.

“Ancestor (X,Y) :- Parent (X,Y); Parent(X,Z), Ancestor(Z,Y)”

Another example is the Stanford BioBike Bioinformatics application to be
described later.

(2) Your problem can be solved by SQL but you want to bypass going
through SQL every time you need an object from the database. One
example is RDF databases. You may be able to store RDF triples in a
traditional relational database, but reasoning over the data proves to be
very slow. Custom-made databases for RDF are much faster. You can
easily make a customized RDF database with AllegroCache. All
subsequent queries on the RDF data will only involve referencing the
data in memory directly.

(3) Your data is too complex for a relational database. For instance, your
objects are frames with variable slots, and new slots are to be added at
run-time. In such a case, it would be better to use a frame system on top

AllegroCache MySQL

(defclass* call-data () create table call-data

 ((call_number (call_number int primary key

 :index :any-unique) auto_increment,

 action action int,

 from_user from_user int,

 to_user to_user int,

 time_start time_start int,

 time_spoken time_spoken int,

 amount amount int,

 balance balance int,

 description)) description varchar(200)

);

Write 5.5K Objects / Sec 6K Objects / Sec

Sequential

Read
35K Objects / Sec 70K Objects / Sec

Random

Read
35K Objects / Sec 5K Objects / Sec

Object Data

(Record)

Definition

Performance Comparison vs. Relational DB (MySQL)

Copyright  2005 Franz Inc. 13 of 15 AllegroCache White Paper 20051012

of AllegroCache rather than a relational database. With AllegroCache,
you can even index certain slots at runtime and the retrieval language
immediately recognizes them.

(4) Use AllegroCache to improve performance in database backed e-
commerce sites. As the Internet matures, accessing information and
services through the web at any time from anywhere by anyone has
become necessity for business to survive. B2C e-commerce sites like
Amazon.com are prominent examples of such a new business model.
The explosive growth of Internet-based business services means that
thousands may try to access your application and data simultaneously,
anytime. To succeed, applications must avoid poor response time and
service outages. Simply adding bigger hardware and more relational
database systems (e.g., Oracle servers) adds significant costs without
addressing the scalability problem, especially for accessing non-static
data. This is due to logical database access bottlenecks even though
bottlenecks at physical database servers may have been reduced. This
is really not an intelligent solution since, at typical e-commerce sites,
90% of transactions are reads and 90% of queries access only 10 % of
the data. It is more sensible to deploy a 64-bit multi-gigabyte machine
that caches the data in the form of objects. (a 16-Gigabyte server with
four AMD processors costs at the time of this writing not much more than
$14,000). Amazon has used this application-level caching approach
quite successfully, reducing some of data synchronization delay from
more than 24 hours to minutes. This is one type of application that
originally motivated the development of AllegroCache.

Initial Validating Applications

While developing AllegroCache, we have actively cooperated with several
complex application projects (see below) at outside institutions and at Franz
to validate the design of AllegroCache and to fine-tune performance
characteristics. We want to ensure that AllegroCache meets the strict
requirements of these complex applications, and that it will be production-
ready when launched. Here are some examples:

(1) BioBike at Stanford University

The BioBike project provides an integrated, on-line, programmable
biological knowledge base for the biologists. BioBike itself is a very
simple, very efficient biology-specific programming language. The
BioBike vision is having this programmable access to an integrated
biological knowledge base, through the web. In the best case, biologists
themselves would be able to log into the system and write their own
simple programs to ask novel biological questions.

(See http://nostoc.stanford.edu/Docs/intro.html)

In cooperation with the authors of BioBike, we have implemented a
version of BioBike where the knowledge base is stored in AllegroCache.
BioBike uses a frame-based knowledge representation thus requiring us
to build a frame-based system on top of AllegroCache. When using
frames with AllegroCache, you can add arbitrary slots to a frame object,
similar to the Python's object system.

With this added capability, AllegroCache can now read in heterogeneous
databases without worrying about the number of object slots to be read
in.

Copyright  2005 Franz Inc. 14 of 15 AllegroCache White Paper 20051012

(2) Fraud Detection over Call Detail Records (CDR’s)

Kido Software in India is testing Allegro Cache for building mobile user
profiles from call data records (CDRs) collected from downstream
processes. Mobile phone operators use such profile information to
analyze fraudulent uses of mobile phones. This profile information is
further used for analyzing detailed caller use patterns, which are useful in
planning and efficient deployment of network resources.

Mobile operators heretofore are struggling with the volume of call data
that typically run into millions of calls per day/ week/ month, depending
on the size of the operator. This results in gigabytes of call data in short
order that need to be analyzed in a timely manner, ideally in near real
time.

Allegro Cache is a very good database choice for such application
because of its scalability and its in-memory cache for high performance.
It has proven effective for large amounts of CDR data running into
hundreds of gigabytes.

(3) Textual Data-mining

Franz Inc runs the largest chat-bot site on the web (see
www.pandorabots.com). There are about 50,000 bots hosted on the
Pandorabots site, and daily conversation has reached over 1 million
sentences. It has stored more than 100 million conversations in
AllegroCache (a conversation is roughly defined as the conversation id,
the IP-address, the user id, the sequence number, what the user typed,
what the bot answered, the topic of the sentence, etc.) With these
conversations cached in AllegroCache, we can do interesting graph-
searches through the whole conversation space using full indexing on all
the slots of these 100 million conversations. It is used to validate both
the performance and scalability of AllegroCache.

(4) RDF knowledge server

Another application written with AllegroCache is a RDF knowledge
server. RDF is the language of the Semantic Web for representing
information about resources in the World Wide Web. It was originally
intended for representing metadata about Web resources, such as the
title, author, and modification date of a Web page, copyright and
licensing information about a Web document, or the availability schedule
for a shared resource. By generalizing the concept of a "Web resource",
RDF can also be used to represent information about things that can be
identified on the Web, even when they cannot be directly retrieved on the
Web. Examples include information about items available from on-line
shopping facilities (e.g., information about specifications, prices, and
availability), or the description of a user's preferences for information
delivery. (See http://www.w3c.org/TR/rdf-primer/#intro.)

Franz has implemented a RDF knowledge server that stores triples and
nodes (URI's that denote subjects and predicates) in AllegroCache. The
query engine uses a number of indexes on triples and nodes to retrieve
triples very efficiently. It uses the ACL XML parser to read in existing
RDF files on the web and use AllegroServe and Webactions to serve the
web pages for users.

Copyright  2005 Franz Inc. 15 of 15 AllegroCache White Paper 20051012

Platforms Supported

AllegroCache runs on all 32 and 64 bit platforms where Allegro Common Lisp
runs, including basically all Windows, Unix, Linux and Mac OSX platforms.

Product Configuration

Configuration:

(1) Single machine, multiple processes simultaneously accessing the
database on that machine.

(2) Multiple processes on multiple machines running different OS access
a database on a single sever machine in the network simultaneously.

Developers version: For developers in the government or in commercial
sectors. All customers of ACL Enterprise Edition automatically get a copy of
AllegroCache developer version for their evaluation and development needs.

Evaluation version: Non-ACL customers can contact Franz to get a 6-
month evaluation of both ACL and AllegroCache from Franz (to be extended
if necessary).

Deployment version: We have three deployment options:

32 bit single-user version (stand-alone version)

64 bit one processor server version (server application backend)

64 bit multiprocessor server version (server application backend)

Please call 1-888-CLOS-NOW or email to:

allegrocache@franz.com

Summary

AllegroCache is the database for tomorrow

� Computational complexity of problems we faced today are growing
exponentially, and the situation will only worsen.

� Distributed object data caching on application memories offers the best
performance when dealing complex data model.

� AllegroCache is the easiest and most versatile data caching system for
handling complex problems with large data sets.

� AllegroCache has AI built-in for easy development of reasoning code
over large complex data sets.

