The Source Stepper in
Allegro CL 8.2

David Margolies (dm@franz.com)
Duane Rettig

Questions and comments to
support@franz.com

2/25/2010

Source Stepper Availability

Available on platforms that support the IDE
(Integrated Development Environment)

Available as a tty interface when |IDE is not
available (as we will show)

Not available on Solaris or AlX at this time

2/25/2010

Requirements for source stepping

Code must be in a file
The file must be compiled and loaded into Lisp

The compilation must be done while the
compiler:save-source-level-debug-info-switch
IS true, which it is when the debug optimization
quality is 3

*load-source-file-info™ should be true (as it is
initially)

Source Stepping in the IDE

When the Stepper Dialog is visible, compilation
IS done right (display it with the Stepper
Dialog command on the IDE’s Run menu):

International Allegro CL Enterprise Edition 8.2 Release: 25-Jan-2010 15:05 [allegro.dx]
File Edit Search View Windows Tools | Run Form Recent Help Install

= ﬁ m Run Project Ctrl+5hift+R.
D I : E @' = Run Form Ctrl+shift+F
|Debugging and programming utilities. Ehan Ctrl+5hift+X
Interrupt Pause
#. Debug Window Trace F&
I Listener 1 LTI Ctrl+F8

Untrace Al Ctrl+5hift+F3
| . ?—>‘<F' =f>‘ R I Retrace Cirl+Alt+78
International Allegro CL Ente Trace Status Shift+73
8.2 [Windows] (Feb 1, 2818 11 Trace Dialog Alt+F3
Copyright (C) 1985-2818, Frar

Set Breakpoint F7
This development copy of Alle Remove Breakpoint Crl+7

8.2 testers Remove All Breakpoints Ctrl+5hift+F7

Break Status shift+F7

CG version 1.134 / IDE versitc
Loaded options from C:\Users?

Stepper Dialog

Runtime Analyzer Control [
;; Optimization settings: sal puntime Analyzer Control Diglog Cirl+AIEHFS
;s For a complete descriptior Runtime Analyzer Results Dialog Alt4ES

Current reader case mode: . Prioritize IDE Response Alt+5hift+Z

2/25/2010 4

":, Stepper

Stepper Dialog

=10l %]

To beqgin, show this dialog, then use "File | Compile and ﬂ Edit |

¥ Breakpoints Enabled

Load” on a file to test, then use "Run | Set Breakpoint™
on one or more functions and methods in that file, and ll

Return | Continue |

Step
|7 Hext Into

(

Macroexpansion Stepping Action
" Ower " Across

INU Preferred Language

¥ Include Dead Locals

" Inio

i Out

2/25/2010

2/25/2010

Once Stepper Dialog is displayed, files
wtlll bg compiled and loaded with info
store

If you use IDE tools to compile and load file,
for example using the Compile/Load button,
the file will be compiled suitably for source

stepping.

*"-f, International Allegro CL Enterprise Edition B.2 Release: 2

File Edit Search Wiew ‘Windows Tools Run Form Recen

DA BO0O>@E|

Loads a compiled file, first compiling the source code if it iz newer.

A first example

= [The following function is defined in foo.cl:
(defun foo (path n)

(with-open-file (s path :direction :input

.if-does-not-exist nil)
(let (line)

(dotimes (i n)
(setq line (read-line s nil s))
(if (eq line s) (return))
(print s)))))

2/25/2010

You must set at least one breakpoint
using the :br top-level command

‘br foo

This sets a breakpoint at foo. When a call 1s made to the
function foo, computation will stop and information will be
displayed 1n the stepper dialog (we are not doing this yet)

:br nil ;; clears breakpoints

2/25/2010 8

The function foo reads some lines of a
file and prints them

The idea is you specify a file and a number of
lines, that number of lines read and printed.

There is an error in the function: the stream
object is printed rather than the line.

2/25/2010 9

2/25/2010

¥Ve compile and load the file and call
00:

cg-user(6): (foo "foo.cl" 10)

#<file-simple-stream #P"foo.cl" for input pos 23 @ #x210f0a6a>
#<file-simple-stream #P"foo.cl" for input pos 25 @ #x210f0a6a>
#<file-simple-stream #P"foo.cl" for input pos 46 @ #x210f0a6a>
#<file-simple-stream #P"foo.cl" for input pos 94 @ #x210f0a6a>
#<file-simple-stream #P"foo.cl" for input pos 149 @ #x210f0a6a>
#<file-simple-stream #P"foo.cl" for input pos 169 @ #x210f0a6a>
#<file-simple-stream #P"foo.cl" for input pos 196 @ #x210f0a6a>
#<file-simple-stream #P"foo.cl" for input pos 244 @ #x210f0a6a>
#<file-simple-stream #P"foo.cl" for input pos 284 @ #x210f0a6a>
#<file-simple-stream #P"foo.cl" for input pos 310 @ #x210f0a6a>
nil

cg-user(7):

10

Not what we wanted!

= So we will step through to see what is going
on.

= We display the Stepper Dialog. We must
recompile (so source debug info will be
displayed).

= We modify foo.cl and save so compile/load will

recompile (you can enter a space to change
the file).

= We set a breakpoint, :br foo, and call
(foo “foo.cl” 10)

2/25/2010 11

2/25/2010

Stepping information makes the
compiled (fasl) file bigger

foo.fasl without stepping info is 3 Kb.
foo.fasl with stepping info is 8 Kb.

12

' Stepper - foo i

Stepper Dialog displaying call to foo

_ o] x|

{defun foo ({path n)
{with-open-file {5 path :direction
{1let (1line)
{dotimes (i n)

{if {eq line s} {returnl)
(print s)}3))

sinput
tif—-does—not-exist nil)

{setq line (read-l1line s nil s3})

{defun foo {(path n}
{(with—open-file (s path
{let {(1ine)
{dotimes (i n)
fecotn Tine freaad-Tine = nil <11

direction

zinput

tif-does—not—-exist nil)

|»

required path “foo.cl”
required n 10

local (dead s) 138217107
local (dead nil} 13743998
local (dead g1167) #\7

local (dead n) 32768
local fdead iy 0

Orange highlighting indicates a macro form.
The current Macro Slide Direction will affect the next step
for this macro form.

Return Continue

Step
’7 Hext

[+ Breakpoints Enabled

!

(simple-array character (6))
fixnum

fixnum

fixnum

character

fixnum

fixnum

|»

Edit INuPrmEWedLanguage

I+ Include Dead Locals

Macroexpansion Stepping Action

= Over Across = Into " Qut

|5t1:|-ppﬁ:l in foo .

2/25/2010

13

We just click Next and watch the forms
being evaluated

When we get to (print s), the stream object is
printed and we (presumably) figure out our
error:

(print s) should be (print line)

2/25/2010 14

2/25/2010

Things to note

Macros are expanded. You see the macro expansion
and the individual forms

Relevant stack values are displayed. Often many
are unobvious but some are what you expect

The form being executed 1s displayed

Colors indicate information about a form

15

More things to note

» The Return button returns from the current form

= The Continue button usually jumps to the next

breakpoint, and

being evaluated

so often to the end of the form
(and clears the dialog)

= Closing the dial

log does not stop stepping, but

1nitiates the tty stepper

= Reopening the dialog usually reinitiates dialog
stepping (after a return 1s entered), but
closing/reopening 1s not recommended

2/25/2010

16

The Edit button

= Clicking on the Edit Button displays the source
In a Editor pane

= When a form is highlighted in blue, it is usually
the same as a form in the source and that form
will be highlighted in the Editor pane

= This allows you to go right to the source of
Interest

2/25/2010 17

2/25/2010

Dynamically setting breakpoints

Breakpoints are indicated by red parentheses.

You can add/remove breakpoints with the
mouse
Then Continue jumps to the next breakpoint

18

TTY stepper

« If the IDE is not being used or the Stepper
dialog is not displayed, you get the tty source
stepper.

= [he initial steps are the same (make sure
debug is 3, compile the file, set a breakpoint,
evaluate a form).

= Using the dialog is preferred because there is
a lot of information to display

2/25/2010 19

The Macro Expansion Stepping Action
option

This affects how we step through macros and
Into functions.

(This is the :slide option in the tty stepper)

2/25/2010 20

Last notes

=« Compiled files can be very much bigger when
stepping information is stored.

= [he actual running code is unchanged. The
extra space comes from the annotations.

= In certain cases, the compiler can take
minutes when before it took microseconds.

2/25/2010 21

2/25/2010

Documentation

T'he tty source stepper in
doc/debugging.htm#source-step- 1

I'he Stepper Dialog in doc/ide-menus-and-
dialogs/stepper-dialog.htm

Be sure to do updates as we will be making
improvements/fixing issues

22

2/25/2010

The Source Stepper in
Allegro CL 8.2

David Margolies (dm@franz.com)
Duane Rettig

Questions and comments to
support@franz.com

23

