
CLIM 2
User

Guide

version 2.2.2
September, 2005
CLIM 2.2 User Guide 1 - 1

Copyright and other notices:

This is revision 4 of this manual. This manual has Franz Inc. document number D-U-00-000-01-20628-0-3.

Copyright  1982-2005 by Franz Inc. All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, by photo-

copying or recording, or otherwise, without the prior and explicit written permission of Franz incorporated.

Restricted rights legend: Use, duplication, and disclosure by the United States Government are subject to

Restricted Rights for Commercial Software developed at private expense as specified in DOD FAR 52.227-

7013 (c) (1) (ii).

Allegro CL and Allegro Composer are registered trademarks of Franz inc.

Allegro Common Windows, Allegro Presto, Allegro Runtime, and Allegro Matrix are trademarks of Franz

inc.

Unix is a trademark of AT&T.

The Allegro CL software as provided may contain material copyright  Xerox Corp. and the Open Systems

Foundation. All such material is used and distributed with permission. Other, uncopyrighted material orig-

inally developed at MIT and at CMU is also included.

Other material,  Lucid Inc., Symbolics Inc. or in the public domain is also included.
1 - 2 CLIM 2.2 User Guide

Contents

1 Introduction and notation 11
1.1 Notation used in this manual 11

Packages 12
Keyword arguments 12
Type faces 12
→ symbol means ‘evaluates to’ 13
Special notation for unimplemented features 13

1.2 Comments and suggestions 13
1.3 Some CLIM terms 13
1.4 Reporting bugs 14

Where to report bugs and send questions 16
1.5 Patches 15

The Allegro CL FAQ 16

2 Getting started with CLIM 17
2.1 General information 17

Features for CLIM 17
You may need to obtain MetroLink Motif on Linux and FreeBSD 17
Loading Motif CLIM into a Lisp image built without CLIM 17
The clim-user package 17
Setting the server path 18
The CLIM demos 18
A simple example 18
test-frame and *test-pane* 20
Many CLIM operations need a context to work 20

2.2 Window-manager-specific information 21
Motif peculiarities 21

2.3 X resources 21
Application 21
Widget 22
Resource 22
Wildcards 22
Examples 22
Reinitializing resources 23

2.4 Some miscellaneous quirks and tricks 23
Many CLIM macros turn bodies into closures 23
Reading a password 23
Getting a gc cursor 24
Getting hyper and super keys 25
Rectangles and bounding-rectangles are different 25

3 Drawing graphics in CLIM 27
3.1 Concepts of drawing graphics in CLIM 27

3.1.1 The drawing plane 27
3.1.2 Coordinates 28
CLIM 2.2 User Guide 3

3.1.3 Sheets and Streams, and Mediums 29
3.2 Examples of Using CLIM Drawing Functions 29
3.3 CLIM drawing functions 30
3.4 Medium-level drawing functions in CLIM 38
3.5 Pixmaps in CLIM 40

3.5.1 Example of Using CLIM Pixmaps 42
3.6 General geometric objects and regions in CLIM 43

3.6.1 Region predicates in CLIM 44
3.6.2 Composition of CLIM regions 44
3.6.3 CLIM point objects 46
3.6.4 Polygons and polylines in CLIM 46
3.6.5 Lines in CLIM 48
3.6.6 Rectangles in CLIM 49
3.6.7 Bounding Rectangles in CLIM 51
3.6.8 Ellipses and Elliptical Arcs in CLIM 53

4 The CLIM drawing environment 57
4.1 Introduction to CLIM drawing environments 57

4.1.1 Components of CLIM Mediums 58
4.2 Using CLIM drawing options 59

4.2.1 Set of CLIM drawing options 60
4.2.2 Using the :filled option to certain CLIM drawing functions 62

4.3 CLIM line styles 62
4.3.1 CLIM line style objects 62
4.3.2 CLIM line style suboptions 63

4.4 Transformations in CLIM 65
4.4.1 The transformations used by CLIM 66
4.4.2 CLIM transformation constructors 67
4.4.3 Operations on CLIM transformations 68
4.4.4 Composition of CLIM transformations 70
4.4.5 Applying CLIM transformations 75

5 Text styles in CLIM 77
5.1 Concepts of CLIM text styles 77
5.2 CLIM Text Style Objects 78
5.3 CLIM Text Style Suboptions 78
5.4 CLIM Text Style Functions 78

6 Drawing in color in CLIM 83
6.1 Concepts of drawing in color in CLIM 83

6.1.1 CLIM color objects 83
Rendering of colors 84
Palettes 84

6.2 CLIM Operators for Drawing in Color 86
Device colors 87
Color conversion functionality 88

6.2.1 Dynamic colors and layered colors 88
4 CLIM 2.2 User Guide

Dynamic colors 88
Layered colors 89

6.3 Predefined color names in CLIM 90

7 Drawing with designs in CLIM 93
7.1 Concepts of Designs in CLIM 93
7.2 Indirect Ink in CLIM 94
7.3 Flipping Ink in CLIM 94
7.4 Concepts of patterned designs in CLIM 95

Patterns and Stencils 95
Tiling 95
Transforming Designs 95

7.4.1 Operators for patterned designs in CLIM 95
7.4.2 Reading patterns from X11 image files 98

7.5 Concepts of compositing and translucent ink in CLIM 98
Controlling Opacity 98
Color Blending 99
Compositing 99

7.5.1 Operators for Translucent Ink and Compositing in CLIM 100
7.6 Complex Designs in CLIM 101
7.7 Achieving different drawing effects in CLIM 102

8 Presentation types in CLIM 105
8.1 Concepts of CLIM presentation types 105

8.1.1 Presentations 105
8.1.2 Output with its semantics attached 106
8.1.3 Input context 106
8.1.4 Inheritance 106
8.1.5 Presentation translators 106
8.1.6 What the application programmer does 107

8.2 How to specify a CLIM presentation type 107
8.3 Using CLIM presentation types for output 108

8.3.1 CLIM operators for presenting typed output 109
8.3.2 Additional functions for operating on presentations in CLIM 111

8.4 Using CLIM presentation types for input 112
Examples: 112

8.4.1 CLIM operators for accepting input 113
8.5 Predefined presentation types in CLIM 116

8.5.1 Basic presentation types in CLIM 116
8.5.2 Numeric presentation types in CLIM 117
8.5.3 Character and string presentation types in CLIM 117
8.5.4 Pathname presentation type in CLIM 118
8.5.5 One-of and some-of presentation types in CLIM 118
8.5.6 Sequence presentation types in CLIM 120
8.5.7 Meta presentation types in CLIM 121
8.5.8 Compound presentation types in CLIM 122
8.5.9 Lisp form presentation types in CLIM 122

8.6 Defining a new presentation type in CLIM 123
CLIM 2.2 User Guide 5

8.6.1 Concepts of defining a new presentation type in CLIM 123
8.6.2 CLIM presentation type Inheritance 124
8.6.3 Examples of defining a new CLIM presentation type 124
8.6.4 Example of modelling courses at a university 124
8.6.5 Examples of more complex presentation types 131
8.6.6 CLIM operators for defining new presentation types 132
8.6.7 Defining new presentation methods 134
8.6.8 CLIM operators for defining presentation type abbreviations 135
8.6.9 More about presentation methods in CLIM 136
8.6.10 Utilities for clim:accept presentation methods 139
8.6.11 clim:accept and the input editor 144
8.6.12 Help facilities for clim:accept 146
8.6.13 Using views with CLIM presentation types 147
8.6.14 Functions that operate on CLIM presentation types 151

8.7 Presentation translators in CLIM 152
8.7.1 What controls sensitivity in CLIM? 153
8.7.2 CLIM operators for defining presentation translators 154

Determining the priority of translators 156
Examples of presentation translators 157
Examples of Presentation to Command Translators 158
Defining a Presentation Action 159
Examples of Drag and Drop Translators 160
Defining a Presentation Translator from the Blank Area 161

8.7.3 Applicability of CLIM presentation translators 161
8.7.4 Input contexts in CLIM 162

Nested input contexts in CLIM 162
8.7.5 Nested presentations in CLIM 163
8.7.6 Gestures in CLIM 163

Pointer gestures 163
Keyboard gestures 165

8.7.7 Operators for gestures in CLIM 165
8.7.8 Events in CLIM 167
8.7.9 Low level functions for CLIM presentation translators 169

9 Defining application frames in CLIM 173
9.1 Concepts of CLIM application frames 173
9.2 Defining CLIM application frames 173

Some examples 175
More application-frame functions and utilities 176

9.2.1 Panes in CLIM 178
9.2.2 Basic pane construction 179
9.2.3 Using the :panes option to clim:define-application-frame 179
9.2.4 CLIM stream panes 182

Making CLIM Stream Panes 183
9.2.5 Using the :layouts Option to clim:define-application-frame 184

The space requirement 184
The layout 186

9.2.6 Examples of the :panes and :layouts options to clim:define-application-
frame 190

9.3 CLIM application frames vs. CLOS 193
6 CLIM 2.2 User Guide

9.3.1 Initializing application frames 193
9.3.2 Inheritance of application frames 194
9.3.3 Accessing slots and components of CLIM application frames 196

9.4 Running a CLIM application 196
9.5 Examples of CLIM application frames 196

9.5.1 Example of defining a CLIM application frame 196
9.5.2 Example of constructing a function as part of running an application 198

9.6 CLIM application frame accessors 198
Frame iconification/deiconification 202

9.7 Operators for running CLIM applications 202

10 Commands in CLIM 207
10.1 Introduction to CLIM commands 207
10.2 Defining commands the easy way 208

10.2.1 Command names and command line names 208
10.3 Command objects in CLIM 209
10.4 CLIM Command Tables 213

10.4.1 CLIM's predefined command tables 216
10.4.2 Conditions relating to CLIM command tables 216

10.5 Styles of interaction supported by CLIM 217
10.5.1 CLIM's Command Menu Interaction Style 217
10.5.2 Mouse interaction via presentation translators 221
10.5.3 CLIM's command line interaction style 222
10.5.4 CLIM's keystroke interaction style 223

10.6 The CLIM Command Processor 226
10.7 Command-related Presentation Types 228

11 Formatted output in CLIM 231
11.1 Formatted output in CLIM 231
11.2 Concepts of CLIM table and graph formatting 231

11.2.1 Formatting item lists in CLIM 231
11.3 CLIM Operators for Table Formatting 232

11.3.1 Examples of table formatting 235
11.3.2 CLIM operators for item list formatting 236
11.3.3 More examples of CLIM table formatting 238

Formatting a table from a list 238
Formatting a table representing a calendar month 239
Formatting a table with regular graphic elements 240
Formatting a table with irregular graphics in the cells 241
Formatting a table of a sequence of items: clim:formatting-item-list 241

11.4 Formatting graphs in CLIM 242
11.4.1 Examples of CLIM graph formatting 243
11.4.2 CLIM operators for graph formatting 244

Some notes on graphing 247
11.5 Formatting text in CLIM 247
11.6 Bordered output in CLIM 252
CLIM 2.2 User Guide 7

12 Hardcopy streams in CLIM 255
12.1 Function for doing PostScript output 255
12.2 Examples of Doing PostScript Output 256

13 Menus and dialogs in CLIM 257
13.1 Concepts of menus and dialogs in CLIM 257
13.2 Operators for menus in CLIM 257
13.3 Operators for dealing with dialogs in CLIM 262
13.4 Using an :accept-values pane in a CLIM application frame 266
13.5 Examples of menus and dialogs in CLIM 267

13.5.1 Example of using clim:accepting-values 267
13.5.2 Example of using clim:accept-values-command-button 268
13.5.3 Using :resynchronize-every-pass in clim:accepting-values 268
13.5.4 Use of the third value from clim:accept in clim:accepting-values 269
13.5.5 A simple spreadsheet that uses dialogs 270
13.5.6 Examples of using clim:menu-choose 270
13.5.7 Examples of using clim:menu-choose-from-drawer 272

14 Incremental redisplay in CLIM 273
14.1 Concepts of incremental redisplay in CLIM 273
14.2 Using clim:updating-output 274
14.3 CLIM Operators for Incremental Redisplay 275
14.4 Example of incremental redisplay in CLIM 276

15 Manipulating the pointer in CLIM 283
15.1 Manipulating the pointer in CLIM 283
15.2 High Level Operators for Tracking the Pointer in CLIM 285

15.2.1 Examples of Higher Level Pointer-Tracking Facilities 289

16 Using gadgets in CLIM 291
16.1 Using gadgets in CLIM 291
16.2 Basic gadget protocol in CLIM 291

16.2.1 Basic gadgets 292
16.2.2 Value gadgets 294
16.2.3 Action gadgets 295
16.2.4 Other gadget classes 295

16.3 Abstract gadgets in CLIM 296
A note about unmirrored application panes 305

17 The CLIM input editor 307
17.1 Input editing and built-in keystroke commands in CLIM 307

17.1.1 Activation and delimiter gestures 307
Activation gestures 307
Delimiter gestures 307
Abort gestures 308
Completion gestures 308
8 CLIM 2.2 User Guide

Command processor gestures 308
17.1.2 Input editor commands 308

17.2 Concepts of CLIM's input editor 310
17.2.1 Detailed description of the input editor 311

17.3 Functions for doing input editing 312
17.4 The input editing protocol 313
17.5 Examples of extending the input editor 315

18 Output recording in CLIM 317
18.1 Concepts of CLIM output recording 317

18.1.1 Uses of output recording 317
18.2 CLIM operators for output recording 318

18.2.1 Examples of creating and replaying output records 320
18.2.2 Output record database functions 320
18.2.3 Output record change notification protocol 322
18.2.4 Operations on output recording streams 323

18.3 Standard output record classes 324

19 Streams and windows in CLIM 327
19.1 Extended stream input in CLIM 327

19.1.1 Operators for extended stream input 327
19.2 Extended stream output in CLIM 329
19.3 Manipulating the cursor in CLIM 329

19.3.1 Operators for manipulating the cursor 330
19.3.2 Text measurement operations in CLIM 331

19.4 Attracting attention, selecting a file, noting progress 333
Attracting attention 333
Selecting a file 334
Noting progress 334

19.5 Window stream operations in CLIM 335
19.5.1 Clearing and refreshing the drawing plane in CLIM 335
19.5.2 The viewport and scrolling in CLIM 336
19.5.3 Operators for creating CLIM window streams 338

20 The Silica windowing substrate 341
20.1 Overview of CLIM's windowing substrate 341

20.1.1 Basic properties of sheets 342
20.1.2 Basic sheet protocols 342

20.2 Sheet geometry 343
20.2.1 Sheet geometry functions 343

20.3 Relationships between sheets 346
20.3.1 Sheet relationship functions 346

20.4 Sheet input protocol 348
20.4.1 Input protocol functions 348

20.5 Sheet output protocol 348
20.5.1 Associating a medium with a sheet 351

20.6 Repainting protocol 352
CLIM 2.2 User Guide 9

20.6.1 Repaint protocol functions 352
20.7 Ports, grafts, and mirrored sheets 352

20.7.1 Ports 353
20.7.2 Internal Interfaces for Native Coordinates 355

21 Index 357
10 CLIM 2.2 User Guide

Chapter 1 Introduction and
notation

CLIM stands for Common Lisp Interface Manager. It is a portable, powerful, high-level user interface man-

agement system intended for Common Lisp software developers.

This manual is written for CLIM 2.0 by developers of CLIM 2.0. It contains parts (when relevant) of the

CLIM 1.0 manual (published by Symbolics) and it contains new material describing features specific to

CLIM 2.0.

You comments on this manual will be most appreciated. Please tell us both what parts you like (so we can

replicate the style in other areas) and what you feel is missing (so we can add it). Information on where to

send comments can be found on the data sheet at the end of this manual.

1.1 Notation used in this manual

The notation used in this document differs somewhat from the notation used in earlier Allegro CL docu-

ments, although the changes are mostly evolutionary.

Formal definitions are displayed. The first line names the object being defined and tells what kind of

object it is. (The name is on the left, the type in brackets on the right). here are some examples:

name1 [Function]

name2 [Generic function]

name3 [Variable]

If the object accepts arguments (if it is a function, macro, generic function, or even a keyword argument),

the arguments are specified on their own displayed line titled ‘Arguments:’. If an operator take no argu-

ments, the Arguments: line is present but nothing follows Arguments:. Following the arguments line is the

description of the object, again in indented paragraphs, some started with a filled in black square. Here, for

example, is the complete description of the generic function transform-rectangle*:

transform-rectangle* [Generic function]

Arguments: transform x1 y1 x2 y2

■ Applies the transformation transform to the rectangle specified by the four coordinate argu-

ments, which are real numbers. The arguments x1, y1, x2, and y1 are canonicalized in the same way

as for make-bounding-rectangle. Returns four values that specify the minimum and maxi-

mum points of the transformed rectangle in the order min-x, min-y, max-x, and max-y.

■ It is an error is transform does not satisfy rectilinear-transformation-p.

■ transform-rectangle* is the spread version of transform-region in the case where

the transformation is rectilinear and the region is a rectangle.
CLIM 2.2 User Guide 11

Generally, a black square is used to indicate a new topic in the description. Note the following about these

definitions:

Packages
Unless otherwise specified, all symbols naming objects are in the clim package. Most of the example code

have a clim: package qualifier but some do not. If you enter example code, be sure that the clim package

is used or that the clim: qualifier is present. The clim-user package uses the clim package and also

the common-lisp package, so all common-lisp and clim symbols can be referenced without quali-

fiers when the current package is clim-user. clim-user does not use excl (the package containing

many of the Allegro CL extensions). The excl package has no symbol conflicts with clim-user so you

can use excl when in clim-user if you wish.

Keyword arguments
In other Allegro CL manuals, keyword arguments are named with a keyword in formal argument lists and

are referred to as ‘the value of the :xxx keyword argument’ in the text. In this manual, we use a different

method. Keyword arguments do not have a preceding : in the argument list (but they do follow &key); and

the argument is referred to in the text in argument notation (again, without a :). Thus for example:

accept-from-string [Function]

Arguments: type string &key view default default-type
activation-gestures additional-activation-gestures
delimiter-gestures additional-delimiter-gestures
(start 0) end

■ Reads the printed representation of an object of type type from string. This function is like

accept, except that the input is taken from string, starting at the position start and ending at

end. view, default, and default-type are as in accept.

■ [...]

In this example, there are many keyword arguments. One is start, which defaults to 0. If you want to

specify a value for start in a call to accept-from-string, you would do it as follows:

(accept-from-string symbol "ab var1" string :start 3)

Type faces
Type faces are used to distinguish between symbols naming functions and other operators, symbols naming

other things (like constants, variables, etc.), printed forms, and examples.

• Function and other operator names are printed in bold Courier.

• Arguments (and other placeholders) are in slant Courier.

• Symbols naming other things are printed in plain Courier. That face is thus used for

constants (such as #\A and nil) and special symbols (such as *package*) and keywords

and lambda-list keywords (such as :test and &optional, respectively).

• Printed forms and examples are printed in Courier, typically with user input in plain and

what the system prints in bold.

• Longer examples sometimes are printed in a reduced size, so that all 80 characters in a line are

printed on the same line.

We have tried to be careful to break symbol names at a hyphen in the symbol name. Thus, draw-
rectangle will be broken at the hyphen or not at all.
12 CLIM 2.2 User Guide

→ symbol means ‘evaluates to’
Occasionally, we wish to show a form and the result of evaluating the form. We use the symbol → to mean

‘evaluates to’. Thus:

(+ 1 2) → 3
(car (list ’a ’b)) → a

Special notation for unimplemented features
Occasionally, you will see displayed paragraphs that look like:

IMPLEMENTATION LIMITATION: In this release, this does not....

These describe known limitations of the release of CLIM 2.0. Note that not all known limitations are

described in this way. Please also look at the Release Notes for CLIM, where other known bugs and prob-

lems are listed.

1.2 Comments and suggestions

We are pleased to hear from our users in order to improve our products. We invite your comments and sug-

gestions. The address to which to write, either by post or by electronic mail, is on the information sheet at

the end of this document.

1.3 Some CLIM terms

This section defines a number of terms used in CLIM. Note that some terms may have common meanings

which may differ somewhat from the specific CLIM usage.

Bounding rectangle

Every region in CL:IM has a derived bounding rectangle, which is the smallest rectangle that con-

tains every point in the region, and may contain additional points as well. Bounding rectangles are

different from the ordinary geometric rectangles.

Frame

Also called an application frame. A frame appears on the screen as a window. It is subdivided into

panes and these display the information and accept the input associated with your application. See

chapter 9 Defining application frames in CLIM for more information.

Gesture

Actions such as pressing mouse buttons or keyboard keys, perhaps in combination, are called ges-

tures. Because keyboards and mice differ, there is a level of abstraction between a gesture name

and the physical action associated with a gesture. this allows applications to be designed to

respond to gestures (by displaying a menu, selecting an item, etc.) which can be associated with

physical actions when the application is run, rather than when it is written. See section 8.7.6 Ges-
tures in CLIM for more information on defining gestures.

Output record

Unless told to do otherwise, all output to a window in CLIM is captured and saved by the output

recording mechanism and stored in an output record. This record can be ‘replayed’, reproducing

exactly the same output as that which generated the record. Output recording is used for scrolling

and for presentations. See chapter 8 Output recording in CLIM for more information.
CLIM 2.2 User Guide 13

Presentation

CLIM associates Lisp objects with their visual representations on the screen. Thus when you

point (with the mouse) to a visual representation on the screen, CLIM can associate what your are

pointing to with a specific Lisp object. The visual representation of the object is called the pre-

sentation. See chapter 8 Presentation types in CLIM for more information.

Viewport

A window stream viewport is the region of the drawing plane that is visible through the window.

You can change the viewport by scrolling or by reshaping the window. The viewport does not

change if the window is covered by another window (that is, the viewport is the region of the

drawing plane that would be visible if the window were stacked on top). When the cursor position

moves out of the viewport, what happens is determined by the end-of-line action or the end-of-

page action of the window stream.

1.4 Reporting bugs

We are committed to the highest standards of software engineering. Releases of Allegro CL and CLIM are

extensively tested both internally and in the field before wide dissemination. Nevertheless, as with all com-

puter programs, it is possible that you will find bugs or encounter behavior that you do not expect. In that

event, we will do our utmost to resolve the problem. But, resolving bugs is a cooperative venture, and we

need your help.

Before reporting a bug, please study this document to be sure that what you experienced is indeed a bug.

If the documentation is not clear, this is a bug in the documentation: CLIM may not have done what you

expected, but it may have done what it was supposed to do.

A report that such and such happened is generally of limited value in determining the cause of a problem.

It is very important for us to know what happened before the error occurred: what you typed in, what Alle-

gro CL typed out. A verbatim log, preferably hard copy, may be needed. If you are able to localize the bug

and reliably duplicate it with a minimal amount of code, it will greatly expedite repairs.

It is much easier to find a bug that is generated when a single isolated function is applied than a bug that

is generated somewhere when an enormous application is loaded. Although we are intimately familiar with

Allegro CL, you are familiar with your application and the context in which the bug was observed. Context

is also important in determining whether the bug is really in Allegro CL or in something that it depends on,

such as the operating system.

To this end, we request that your reports to us of bugs or of suspected bugs include the following infor-

mation. If any of the information is missing, it is likely to delay or complicate our response.

• CLIM details. Please tell us the version of CLIM, the machine on which you are running.

• Lisp implementation details. Tell us the implementation of Allegro CL that you are using,

including at least the release number and date of release of Allegro CL, the manufacturer, model

and version of the hardware on which you are running Allegro CL, and the operating system and

its release number. The function excl:dribble-bug will automatically write all the needed

information to a file.

• Information about you. Tell us who you are, where you are and how you can be reached (an

electronic mail address if you are reachable via Internet or uucp, a postal address, and your

telephone number), your Allegro CL license number, and in whose name the license is held.

• A description of the bug. Describe clearly and concisely the behavior that you observe.
14 CLIM 2.2 User Guide

• Exhibits. Provide us with the smallest, self-contained Lisp source fragment that will duplicate the

problem, and a log (e.g. produced with dribble or dribble-bug) of a complete session with

Allegro CL that illustrates the bug.

A convenient way of generating at least part of a bug report is to use the excl:dribble-bug function

mentioned above. Typing

(excl:dribble-bug filename)

causes implementation and version information to be written to the file specified by filename, and then

records the Lisp session in the same file. Typing

(dribble)

will close the file after the bug has been exhibited. excl:dribble-bug is defined in section 3.7. Note

that if what you type to duplicate the bug loads in files of yours either directly or indirectly, attach a complete

listing of the source version of these files to your session log. The following dialogue provides a rudimentary

template for the kernel of a bug report.

USER(5) (dribble-bug "bug.dribble")
USER(6) ;; Now duplicate your bug . . .
USER(7) (dribble)

Send bug reports to either the electronic mail or postal address given on the information sheet that is

enclosed with this document. We will investigate the report and inform you of its resolution in a timely man-

ner.

We will meet you more than half way to get your project moving again when a bug stalls you. We only

ask that you take a few steps in our direction.

Where to report bugs and send questions
The information sheet at the very end of this manual gives e-mail and street addresses for Franz Inc., as well

as our telephone number (in short, bugs@franz.com for all bug reports and questions -- any question,

despite the names ‘bugs’; Franz Inc., 1995 University Ave., Berkeley CA 94704 USA; +510-548-3600).

1.5 Patches

Patches are available for download using the World Wide Web. Please see the discussion in the online doc-

ument doc/cl/introduction.htm for information on patches.

The Allegro CL FAQ
We have prepared, and we regularly update, A FAQ (Frequently Asked Questions) document for Allegro

CL. This document contains questions and answers about Allegro CL, examples of interest, and information

that did not make it into this manual. Accessing the FAQ is described in doc/cl/introduction.htm.
CLIM 2.2 User Guide 15

[This page intentionally left blank.]
16 CLIM 2.2 User Guide

Chapter 2 Getting started with
CLIM

In this chapter, we describe how to set up your system for using CLIM, how to access CLIM within Allegro

CL, how to access the CLIM demo files, and how to write a simple demo of your own.

The simple demo involves displaying an application frame and identifying a pane in that frame. After we

create the application frame, the pane will be made the value of the special variable *test-pane*. We

use *test-pane* in many of the small examples in this manual.

2.1 General information

Features for CLIM
A Lisp image with CLIM 2.0 loaded will have both :clim-2 and :clim-2.0 on the *features* list.

It will also have the feature :clim-motif.

Motif on Linux and FreeBSD
You must obtain version 2.1 of Motif to use CLIM on Linux and FreeBSD platforms. A free version is avail-

able from www.openmotif.org. With earlier release, it was necxessary to purchase a commercial version of

Motif on these platforms. That is not longer necessary with release 6.1 of Allegro CL

Loading CLIM into a Lisp image built without CLIM
We urge users to build an image containing CLIM using buildclim.cl (simply load it into a running Lisp).

However, you may load CLIM into a running Lisp by evaluating

(require :climxm)

on UNIX platforms and

(require :climnt)

on Windows.

The clim-user package
We recommend that users of CLIM work in the clim-user package instead of the common-lisp-
user package. clim-user uses all the appropriate packages necessary for CLIM; as a result, you do not

have to qualify symbols associated with CLIM. It also uses the clim-lisp package, which exports

(among some other things) all the symbols in the common-lisp package. You make the clim-user package

current by evaluating the form:

(in-package :clim-user)
CLIM 2.2 User Guide 17

You may wish at this point to use the excl package. This package contains standard extensions to Com-

mon Lisp in Allegro CL. Use the excl package by evaluating:

(use-package :excl)

Setting the server path
The variable *default-server-path* tells CLIM specifies the display where CLIM windows will

be shown. This variable should be set appropriately before doing anything else in CLIM.

The value of this variable should be a list of one or three or more elements. The first element must be

:motif. The second and third elements (if present) are the keyword :display and a string naming the

display.

The additional elements can specify the application name and application class of the CLIM application

(viewed as an X client). See section 2.3 X resources for more information on setting the application name

and class.

You name a display as follows:

"<machine-name>:display#:screen#"

The display# is typically 0. The screen# is typically left out (unless your display has more than one asso-

ciated screen). So, if your machine is named ‘tavy’, the string would typically be "tavy:0". If you wanted

to display Motif CLIM on tavy, you would evaluate the following form:

(setf clim:*default-server-path* ’(:motif :display "tavy:0"))

If you do not specify a :display, CLIM gets the display from the DISPLAY environment variable. To

see what Lisp sees as the value of this variable, evaluate:

(sys:getenv "DISPLAY")

The initial value of *default-server-path* is (:motif).

The CLIM demos
The src/clim/demo/ directory on the distribution tape contains a set of demo programs. Compiled versions

of the demos also exist and can be loaded and run as described below.

To load the demos into an image with CLIM already loaded (see Loading CLIM into a Lisp image built
without CLIM above), evaluate:

(require :climdemo)

Once that form has completed, you may start the demos. The simplest way is to evaluate:

(clim-demo:start-demo)
18 CLIM 2.2 User Guide

A simple example
Here is another simple example. We use this example throughout this manual. The following code displays

a simple application frame with a display pane. This display pane can be used to test drawing and writing

functions along with other things.

(in-package :clim-user)

(define-application-frame test ()
 ()
 (:panes
 (display :application))
 (:layouts
 (default display)))

(define-test-command (com-quit :menu t) ()
 (frame-exit *application-frame*))

(defvar *test-frame* nil)

(defun test ()
 (flet ((run ()
 (let ((frame (make-application-frame 'test)))
 (setq *test-frame* frame) (run-frame-top-level frame))))
 (mp:process-run-function "test" #'run)))

;;; evaluate the following to create and display the frame:
(test)

;;; after calling (test) and the frame has appeared evaluate...
(setq *test-pane* (get-frame-pane *test-frame* 'display))

Be sure to evaluate the last form (setting the value of *test-pane*) after you have evaluated (test)
and the frame has appeared. Until that time, get-frame-pane will not work properly.

The frame, when it appears, it looks like this. .

Window Menu
Button
CLIM 2.2 User Guide 19

Notice the Window Menu Button in the upper right corner. Pressing the left mouse button over it brings

up a menu of choices. Choosing Size allows you to change the size of the window. We have done so, making

the window bigger:

Clicking on the Quit button will cause the frame to be closed. You can clear the display pane portion by

evaluating

(window-clear *test-pane*)

test-frame and *test-pane*
The frame we have just created is the value of *test-frame*. The display pane inside the frame is the

value of *test-pane*. many of the examples in this manual use *test-frame* or *test-pane*.

If you wish to try those examples, you should create this frame and pane as indicated above.

Many CLIM operations need a context to work
Many CLIM operations need to be executed from within the context of a frame’s top level function. In par-

ticular this ensures that *application-frame* is correctly bound. If you get unexpected results by

calling CLIM functions outside of this context (eg simply evaluating the forms within a listener) the first

thing you should try is to call the functions from within the frame’s top level. You can do this by defining

frame commands with :menu t and then activating the command from the running frame. e.g.

(define-test-command (com-clear :menu t) ()
 (let ((stream (get-frame-pane *application-frame* ’display)))
 (window-clear stream)))

Another alternative is to use the CLIM Lisp Listener demo. This provides a read-eval-print loop running

within the frame’s top level. *standard-output* can be used whenever a CLIM stream pane is

required. eg.

(window-clear *standard-output*)
20 CLIM 2.2 User Guide

2.2 Window-manager-specific information

Some window managers have peculiarities which makes CLIM behave differently than you might expect.

We discuss those peculiarities know at the time of the printing of this document in this section. Note that

there are likely other things which were unknown at the time this manual was printed. Check the release

notes or contact customer support for more information.

Motif peculiarities
Using Motif on keyboards without a F10 key

When running a Motif application (including CLIM) you may see the following warning from

time to time:

Warning: Xt:

 Name:

 Class: XmRowColumn

Illegal mnemonic character; Could not convert X KEYSYM to a keycode

This occurs when you are using a keyboard that does not have an F10 key, which Motif uses by

default to pop up a menu.

The keys used by Motif are set in a file named .motifbind in your home directory. We supply such

a file in the distribution, misc/dot-motifbind. You can use this file if you do not use one of your

own. Whichever .motifbind you use, it should not contain a reference to the F10 key Any such ref-

erence should be changed to refer to a key that does exist. Note that as supplied, dot-motifbind
does refer to F10 so it has to be edited.

2.3 X resources

The visual appearance of CLIM applications can be controlled explicitly in the pane specifications of appli-

cation frame definitions or implicitly by the use of X resources. In all cases the pane specification overrides

any X resource defaults.

A complete resource specification uses the X toolkit style of resource specifications. This has the advan-

tage that resource specifications controlling CLIM's behavior can be combined with specifications control-

ling the behavior of the underlying Motif toolkit in a uniform and consistent manner. The basic syntax

(without wildcards) of a resource specification is:

application.widget.widget...resource: value

Each of the application, widget and resource components are described in turn below:

Application
The application name and class for all CLIM windows is by default

The defaults can be overridden by use of the options application-name and application-
class in the port server-path. For example:

Name Class

clim Clim
CLIM 2.2 User Guide 21

(find-port :server-path '(:motif :display "louie:0"
 :application-name "myApp"
 :application-class "MyApp"))

Widget
The widget names and classes of the underlying toolkit can be used to identify to which particular widget

the resource applies.

CLIM names those widgets that are mirrors of CLIM panes with the name of the pane. These names can

then be used to form portable (i.e. not toolkit dependent) resource specifications. The pane names are mod-

ified to conform with the standard X widget naming conventions. Thus, for example:

Resource
The resource names and classes that CLIM understands are:

foreground and background have the standard meanings.

textStyle controls the font. It can be specified either as the name of an X font using the standard nam-

ing conventions or alternatively a CLIM text style specification can be given. If you use standard X font

name to specify a text style then the individual components are not defined and cannot be individually mod-

ified. For example the following will not work as expected.

(with-text-size (stream :larger) (format stream ...)

Additionally resource name and classes specific to the underlying toolkit can be used.

Wildcards
The standard resource wildcards * and ? can be used in resource specifications

Examples
Clim*Background: #B900B900B900
Clim*Foreground: black
Clim*TextStyle: (:fix :roman :small)
clim*menuBar*background: khaki
clim*menuBar.textStyle: -*-swiss 742-bold-r-normal-*-140-*-p-100-*
clim*XmPushButton.shadowThickness: 8

CLIM pane name X widget name

display display

main-display mainDisplay

Name Class Example

foreground Foreground black

background Background gray70

textStyle TestStyle (:fix :roman :small)
22 CLIM 2.2 User Guide

Reinitializing resources
This is hard to do while CLIM is running. It may work to destroy the current port (with destroy-port),

make the changes to X, and then re-establish the port with find-port. However, the recommended thing

to do is stop CLIM and then restart it.

2.4 Some miscellaneous quirks and tricks

This section points out things that do not seem to fit elsewhere and also contains bit of code for accomplish-

ing various things that we believe a number of users will want to do.

Many CLIM macros turn bodies into closures
 The following code defines a method to draw some buttons.

(defmethod draw-csf-buttons ((frame permanent-window) stream)
 (let ((csf-list '(S C H P Z I))
 (text-list '(" S " " C " " H " " P " " Z " " I "))
 (window-width (window-inside-width stream)))
 (draw-text* stream "Critical Safety Functions"
 (/ window-width 2) 15 :align-x :center :align-y :top
 :text-size :large)
 ;; draw the buttons
 (stream-set-cursor-position* stream 36 60)
 (dotimes (i (length text-list))
 (accept-values-command-button
 (stream)
 (princ (nth i text-list) stream)
 (display-csf-graph (nth i csf-list)))
 (stream-increment-cursor-position* stream 47 nil)
)))

Now, the buttons work well but the function display-csf-graph is always called with nil as argu-

ment instead of the right one. This happens because accept-values-command-button creates a clo-

sure that references the variable i. This is setq'ed by the dotimes and so at the point the form

(display-csf-graph (nth i csf-list)) is evaluated the value of the variable is the length of

text-list, i.e. the value at the point the loop terminates.

To get the desired behavior, the code should bind a variable to i and reference that variable within the

body of the accept-values-command-button, as is done in the following code:

(dotimes (i (length text-list))
 (let ((index i))
 (accept-values-command-button
 (stream)
 (princ (nth index text-list) stream)
 (display-csf-graph (nth index csf-list)))
 (stream-increment-cursor-position* stream 47 nil)))

Reading a password
When an application reads a password from a user, it typically does not want the password echoed. That is

easy enough to achieve but somewhat harder is echoing some characters (‘X’s or ‘?’s, e.g.) so the user can

keep track of how many characters have been typed. The following code can be used for this purpose:
CLIM 2.2 User Guide 23

(in-package :clim-user)

(define-presentation-type password () :inherit-from ’((string)
 :description "password"))

;;; Presenting a password prints a string of ?’s.

(define-presentation-method present (password (type password) stream
 (view textual-view)
 &key acceptably)
 (when acceptably (error "Not acceptably"))
 (write-string (make-string (length password) :initial-element #\?) stream))

;;; Accepting a password turns off output drawing and recording,
;;; then reads a string using READ-TOKEN.

(define-presentation-method accept
 ((type password) stream (view textual-view) &key)
 (let* ((start (stream-scan-pointer stream))

(passwd (with-output-recording-options (stream :draw nil :record nil)
 (read-token stream))))
 (cond ((< (length passwd) 6)

(simple-parse-error "Need a password with at least 6 characters!"))
 (t
 (presentation-replace-input
 stream passwd ’password view
 :buffer-start start)
 (return-from accept passwd)))))

Getting a gc cursor
CLIM runs on Lisp, which does its own memory management. From time to time, Lisp will seem to stop

or freeze while it is in fact performing a garbage collection, that is cleaning up the memory it uses.

Allegro CL has two types of garbage collections: scavenges and global gc’s. These are described in chap-

ter 15 of the Allegro CL User Guide, but in brief, scavenges are usually quite fast, since only newspace is

gc’ed, while global gc’s, which clean up the entire heap, usually take a noticeable amount of time, some-

times several (and perhaps many) minutes in large complicated applications.

Because Lisp may not be able to allocate a Lisp object until the gc (of whichever type) is complete, get-

ting a gc cursor (or some other indication that a gc is occurring) is difficult. CLIM 2, however, does provide

such a facility. If you evaluate the following form, the cursor will turn into the waiting cursor (typically a

watch or an hourglass) when the cursor is over a CLIM window during a gc.

(setq xm-silica::*use-clim-gc-cursor* t)

Note that Allegro CL provides a great deal of control over global gc’s. You can arrange things so that a

global gc never occurs automatically, but instead occurs only when your code thinks a global gc is appro-

priate. Since global gc’s take much longer than scavenges, you may wish to use this additional control to

schedule global gc’s appropriately or to provide a warning to the user that a global gc is about to happen in

addition to using the gc cursor. See chapter 15 of the Allegro CL User Guide for more information on con-

trolling global gc’s.
24 CLIM 2.2 User Guide

Getting hyper and super keys
Most keyboards have a Meta key of an equivalent (that is a modifier key which you can press that will be

interpreted as Meta by CLIM without any action on your part). CLIM also supports Hyper and Super keys,

but often a keyboard does not have these. X has mod1, mod2, and mod3 keys, and these correspond to Meta,

Super, and Hyper but often only mod1 is set properly.

Here is how to use xmodmap to cause certain keys to generate mod2 and mod3 (super and hyper) on Suns

(which we take as a standard example). Note that if you make use of this facility, users of your application

will have to set up the keys themselves prior to running your application. The setup cannot be done program-

matically from within CLIM.

Do the following to rebind the left meta key to Meta, the right meta key to Super and the left alt key to

Hyper:

xmodmap -e ’clear mod1’
xmodmap -e ’clear mod2’
xmodmap -e ’clear mod3’
xmodmap -e ’add mod1 = Meta_L’
xmodmap -e ’add mod2 = Meta_R’
xmodmap -e ’add mod3 = Alt_L’

Rectangles and bounding-rectangles are different
rectangle objects (created with make-rectangle) and bounding-rectangle objects (created

with make-bounding-rectangle) are quite different types of objects. Sometimes, users confuse them

and use a rectangle where a bounding-rectangle is called for (for example, a clipping region should be a

bounding-rectangle, not a rectangle). Please be aware of the difference as a potential cause of errors.
CLIM 2.2 User Guide 25

[This page intentionally left blank.]
26 CLIM 2.2 User Guide

Chapter 3 Drawing graphics in
CLIM

3.1 Concepts of drawing graphics in CLIM

CLIM offers a set of drawing functions that enable you to draw points, lines, polygons, rectangles, ellipses,

circles, and text. You can affect the way the geometric objects are drawn by supplying drawing options to

the drawing functions. The drawing options support clipping, transformation, line style, text style, ink, and

other aspects of the graphic to be drawn (see the section 4.2 Using CLIM drawing options).

In many cases, it is convenient to use with-drawing-options to surround several calls to drawing

functions, each using the same options. You can override one or more drawing options in any given call by

supplying keywords to the drawing functions themselves. This can also be more efficient, as passing draw-

ing options to each drawing function can cons new short-lived objects; using with-drawing-options
around several drawing functions will cons these objects only once.

3.1.1 The drawing plane

When drawing graphics in CLIM, you imagine that they appear on a drawing plane. The drawing plane

extends infinitely in four directions and has infinite resolution (no pixels). A line that you draw on the draw-

ing plane is infinitely thin. The drawing plane provides an idealized version of the graphics you draw. The

drawing plane has no material existence and cannot be viewed directly.

Of course, you intend that the graphics should be visible to the user, and must be presented on a real dis-

play device. CLIM transfers the graphics from the drawing plane to the window via the rendering process.

Because the window lives on hardware that has physical constraints, the rendering process is forced to com-

promise when it draws the graphics on the window. The actual visual appearance of the window is only an

approximation of the idealized drawing plane.
CLIM 2.2 User Guide 27

Figure 3.1 shows the conceptual model of the drawing functions sending graphical output to the drawing

plane, and the graphics being transferred to a screen by rendering.

Figure 3.1. Rendering from Drawing Plane to Window

The distinction between the idealized drawing plane and the real window enables you to develop pro-

grams without considering the constraints of a real window or other specific output device. This distinction

makes CLIM's drawing model highly portable.

3.1.2 Coordinates

When producing graphic output on the drawing plane, you indicate where to place the output with coordi-
nates. Coordinates are a pair of numbers that specify the x and y placement of a point. When a window is

first created, the origin (that is, x=0, y=0) of the drawing plane is positioned at the top-left corner of the

window. Figure 3.2 shows the orientation of the drawing plane, X extends toward the right, and Y extends

downward.

Figure 3.2. X and Y Axes of Drawing Plane

As the window scrolls downward, the origin of the drawing plane moves above the top edge of the win-

dow. Because windows maintain an output history, the Y axis can extend to a great length. In many cases,

it is burdensome to keep track of the coordinates of the drawing plane, and it can be easier to think in terms

of a local coordinate system.

For example, you might want to draw some business graphics as shown in Figure 3.3. For these graphics,

it is more natural to think in terms of the Y axis growing upwards, and to have an origin other than the origin

of the drawing plane, which might be very far from where you want the graphics to appear. You can create

a local coordinate system in which to produce your graphics. The way you do this is to define a transfor-

Drawing
Functions

Drawing Plane

rendering

Screen

X

Y

28 CLIM 2.2 User Guide

mation which informs CLIM how to map from the local coordinate system to the coordinates of the drawing

plane. For more information, see with-room-for-graphics.

Figure 3.3. Using a Local Coordinate System

3.1.3 Sheets and Streams, and Mediums

A sheet is the most basic window-like object supported by CLIM. It has two primary properties: a region,

and a transformation that relates its coordinate system to the coordinate system of its parent. A streams is a

special kind of sheet that implements the stream protocol; streams include additional state such as the cur-

rent cursor position (which is some point in the drawing plane).

A medium is an object on which drawing takes place. A medium has as attributes: a drawing plane, the

medium's foreground and background, a drawing ink, a transformation, a clipping region, a line style, a text

style, and a default text style. Sheets and streams that support output have a medium as one of their

attributes.

The drawing functions take a medium argument that specifies the destination for output. The drawing

functions are specified to be called on mediums, but they can be called on most panes, sheets, and stream as

well.

The medium keeps track of default drawing options, so if drawing functions are called and some options

are unspecified, they default to the values maintained by the medium.

Different medium classes are provided to allow users to draw on different sorts of devices, such as dis-

plays and printers.

3.2 Examples of Using CLIM Drawing Functions

Figure 3.4 shows the result of evaluating the following forms:

(draw-rectangle* *test-pane* 10 10 200 150 :filled nil :line-thickness 2)
(draw-line* *test-pane* 200 10 10 150)

X

Y

local Y

local X
CLIM 2.2 User Guide 29

(draw-point* *test-pane* 180 25)
(draw-circle* *test-pane* 100 75 40 :filled nil)
(draw-ellipse* *test-pane* 160 110 30 0 0 10 :filled nil)
(draw-ellipse* *test-pane* 160 110 10 0 0 30)
(draw-polygon* *test-pane* '(20 20 50 80 40 20) :filled nil)
(draw-polygon* *test-pane* '(30 90 40 110 20 110))

Figure 3.4. Simple Use of the Drawing Functions

3.3 CLIM drawing functions

Most of CLIM's drawing functions come in pairs. One function takes two arguments to specify a point by

its x and y coordinates; the corresponding function takes one argument, a point object. The function accept-

ing a point object has a name without an asterisk (*), and the function accepting coordinates of the point

has the same name with an asterisk appended to it. For example, draw-point accepts a point object, and

draw-point* accepts coordinates of a point. We expect that using the starred functions and specifying

points by their coordinates will be more convenient in most cases.

The drawing functions take keyword arguments specifying drawing options. For information on the

drawing options, see the section 4.2 Using CLIM drawing options.

If you prefer to create and use point objects, see the section 3.6.3 CLIM Point Objects.

draw-point [Function]

Arguments: medium point-1 &key line-style line-thickness line-unit ink
clipping-region transformation

■ Draws a point on medium at the position indicated by point.

Note that a point is a one-dimensional object. In order to be visible, the rendering of a point must

occupy some non-zero area on the display hardware. A line style object represents the advice of

CLIM to the rendering substrate on how to perform the rendering.

■ The line-unit and line-thickness arguments control the size on the display device of

the blob used to render the point.
30 CLIM 2.2 User Guide

draw-point* [Function]

Arguments: medium x y &key line-style line-thickness line-unit ink
clipping-region transformation

■ Draws a point on medium at the position indicated by x and y.

Note that a point is a one-dimensional object. In order to be visible, the rendering of a point must

occupy some non-zero area on the display hardware. A line style object represents the advice of

CLIM to the rendering substrate on how to perform the rendering.

■ The line-unit and line-thickness arguments control the size on the display device of

the blob used to render the point.

Both draw-point* and draw-point call medium-draw-point* to do the actual drawing.

draw-points [Function]

Arguments: medium point-seq &key line-style line-thickness line-unit
ink clipping-region transformation

■ Draws a set of points on medium. point-seq is a sequence of point objects specifying where

a point is to be drawn. This function is equivalent to calling draw-point repeatedly, but it can be

more convenient and efficient, when drawing more than one point.

draw-points* [Function]

Arguments: medium coord-seq &key line-style line-thickness line-unit
ink clipping-region transformation

■ Draws a set of points on medium. coord-seq is a sequence of pairs of x and y positions (that

is, a sequence of alternating x coordinates and y coordinates which when taken pairwise specify the

points to be drawn).

■ This function is equivalent to calling draw-point* repeatedly, but it can be more convenient

and efficient, when drawing more than one point.

Both draw-points* and draw-points call medium-draw-points* to do the actual drawing.

draw-line [Function]

Arguments: medium point-1 point-2 &key line-style line-thickness
line-unit line-dashes line-cap-shape ink clipping-region
transformation

■ Draws a line segment on medium. The line starts at the position specified by point-1 and ends

at the position specified by point-2, two point objects.

■ This function is the same as draw-line*, except that the positions are specified by points, not

by x and y positions.

draw-line* [Function]

Arguments: medium x1 y1 x2 y2 &key line-style line-thickness line-unit
line-dashes line-cap-shape ink clipping-region
transformation

■ Draws a line segment on medium. The line starts at the position specified by (x1, y1), and ends

at the position specified by (x2, y2).

Both draw-line* and draw-line call medium-draw-line* to do the actual drawing.
CLIM 2.2 User Guide 31

draw-lines [Function]

Arguments: medium point-seq &key line-style line-thickness line-unit
line-dashes line-cap-shape ink clipping-region
transformation

■ Draws a set of disconnected line segments onto medium. point-seq is a sequence of pairs of

points. Each point specifies the starting and ending point of a line.

This function is semantically equivalent to calling draw-line repeatedly, but it can be more

convenient and more efficient when drawing more than one line segment. See the function draw-
line.

draw-lines* [Function]

Arguments: medium coord-seq &key line-style line-thickness line-unit
line-dashes line-cap-shape ink clipping-region
transformation

■ Draws a set of disconnected line segments onto medium. coord-seq is a sequence of pairs of

x and y positions in a list (or vector). Each pair specifies the starting and ending point of a line.

This function is equivalent to calling draw-line* repeatedly, but it can be more convenient

and more efficient when drawing more than one line segment. See the function draw-line*.

Both draw-lines* and draw-lines call medium-draw-lines* to do the actual drawing.

draw-arrow [Function]

Arguments: stream point-1 point-2 &key from-head (to-head t)
(head-length 10) (head-width 5) line-style line-thickness
line-unit line-dashes line-cap-shape ink clipping-region
transformation

■ Draws an arrow on stream. The arrow starts at the position specified by point-1 and ends

with the arrowhead at the position specified by point-2, two point objects.

This function is the same as draw-arrow*, except that the positions are specified by points,

not by x and y positions.

draw-arrow* [Function]

Arguments: stream x1 y1 x2 y2 &key from-head (to-head t)
(head-length 10) (head-width 5) line-style line-thickness
line-unit line-dashes line-cap-shape ink clipping-region
transformation

■ Draws an arrow on stream. The arrow starts at the position specified by x1,y1 and ends with

the arrowhead at the position specified by x2,y2.

draw-polygon [Function]

Arguments: medium point-sequence-1 &key (closed t) (filled t)
line-style line-thickness line-unit line-dashes
line-joint-shape line-cap-shape ink clipping-region
transformation

■ Draws a polygon, or sequence of connected lines, on medium. The keyword arguments control

whether the polygon is closed (each segment is connected to two other segments) and filled. point-
sequence-1 is a list of points which indicate the start of a new line segment.
32 CLIM 2.2 User Guide

This function is the same as draw-polygon*, except that the segments are specified by points,

not x and y positions.

draw-polygon* [Function]

Arguments: medium list-of-x-and-ys &key (closed t) (filled t)
line-style line-thickness line-unit line-dashes
line-joint-shape line-cap-shape ink clipping-region
transformation

■ Draws a polygon, or sequence of connected lines, on medium. The keyword arguments control

whether the polygon is closed (each segment is connected to two other segments) and filled. list-
of-x-and-ys is a list of alternating x and y positions which indicate the start of a new line seg-

ment.

filled Specifies whether the polygon should be filled, a boolean value. If t, a closed polygon

is drawn and filled in. In this case, closed is assumed to be t.

closed When t, specifies that a segment is drawn connecting the ending point of the last seg-

ment to the starting point of the first segment.

Both draw-polygon* and draw-polygon call medium-draw-polygon* to do the actual draw-

ing.

draw-rectangle [Function]

Arguments: medium point1 point2 &key (filled t) line-style
line-thickness line-unit line-dashes line-joint-shape ink
clipping-region transformation

■ Draws an axis-aligned rectangle on medium. The boundaries of the rectangle are specified by the

two points point1 and point2.

This function is the same as draw-rectangle*, except that the positions are specified by

points, not by x and y positions.

draw-rectangle* [Function]

Arguments: medium x1 y1 x2 y2 &key (filled t) line-style line-thickness
line-unit line-dashes line-joint-shape ink clipping-region
transformation

■ Draws an axis-aligned rectangle on medium. The boundaries of the rectangle are specified by x1,

y1, x2, and y2, with (x1,y1) at the upper left and (x2,y2) at the lower right in the standard +Y-

downward coordinate system.

Both draw-rectangle* and draw-rectangle call medium-draw-rectangle* to do the

actual drawing.

draw-rectangles [Function]

Arguments: medium point-seq &key (filled t) line-style line-thickness
line-unit line-dashes line-joint-shape ink clipping-region
transformation

■ Draws a set of axis-aligned rectangles on medium. point-seq is a sequence of pairs of points.

Each point specifies the upper left and lower right corner of the rectangle in the standard +Y-down-

ward coordinate system.
CLIM 2.2 User Guide 33

This function is equivalent to calling draw-rectangle repeatedly, but it can be more conve-

nient and more efficient when drawing more than one rectangle. See the function draw-
rectangle.

draw-rectangles* [Function]

Arguments: medium coord-seq &key (filled t) line-style line-thickness
line-unit line-dashes line-joint-shape ink clipping-region
transformation

■ Draws a set of axis-aligned rectangles on medium. coord-seq is a sequence of 4-tuples x1,

y1, x2, and y2, with (x1,y1) at the upper left and (x2,y2) at the lower right in the standard +Y-down-

ward coordinate system.

This function is equivalent to calling draw-rectangle* repeatedly, but it can be more con-

venient and more efficient when drawing more than one rectangle. See the function draw-
rectangle*.

Both draw-rectangles* and draw-rectangles call medium-draw-rectangles* to do

the actual drawing.

draw-ellipse [Function]

Arguments: medium point-1 radius-1-dx radius-1-dy radius-2-dx
radius-2-dy &key start-angle end-angle (filled t)
line-style line-thickness line-unit line-dashes
line-cap-shape ink clipping-region transformation

IMPLEMENTATION LIMITATION: Because of limitations in X, only ellipses with axes

aligned with the X and Y axes will be drawn. If you specify an ellipse with other axes, X (and thus

CLIM) will draw an ellipse with aligned axes anyway.

■ Draws an ellipse or elliptical arc on medium. The center of the ellipse is specified by point.

This function is the same as draw-ellipse*, except that the center position is expressed as

a point instead of x and y. See the function draw-ellipse*.

■ Two vectors, radius-1-dx, radius-1-dy, and radius-2-dx, radius-2-dy specify

the bounding parallelogram of the ellipse. Those two vectors must not be collinear in order for the

ellipse to be well defined. The special case of an ellipse with its major axes aligned with the coordi-

nate axes can be obtained by setting both radius-1-dy and radius-2-dx to 0. For more infor-

mation about the bounding parallelogram of an ellipse, see the section 3.6.8 Ellipses and elliptical
arcs in CLIM.

start-angle and end-angle enable you to draw an arc rather than a complete ellipse.

Angles are measured with respect to the positive x axis. The elliptical arc runs positively from

start-angle to end-angle. The angles are measured from the positive x axis toward the pos-

itive y axis. In a right-handed coordinate system this direction is counter-clockwise.

The defaults for start-angle and end-angle are nil (that is, there is no default). If you

supply start-angle, then end-angle defaults to 2π. If you supply end-angle, then

start-angle defaults to 0.

filled specifies whether the ellipse should be filled, a boolean value.

In the case of a filled arc, the figure drawn is the pie slice area swept out by a line from the center

of the ellipse to a point on the boundary as the boundary point moves from start-angle to end-
angle.

When drawing unfilled ellipses, the current line style affects the drawing as usual, except that the

joint shape has no effect. The dashing of an elliptical arc starts at start-angle.
34 CLIM 2.2 User Guide

draw-ellipse* [Function]

Arguments: medium center-x center-y radius-1-dx radius-1-dy
radius-2-dx radius-2-dy &key (filled t) start-angle
end-angle line-style line-thickness line-unit line-dashes
line-cap-shape ink clipping-region transformation

IMPLEMENTATION LIMITATION: Because of limitations in X, only ellipses with axes

aligned with the X and Y axes will be drawn. If you specify an ellipse with other axes, X (and thus

CLIM) will draw an ellipse with aligned axes anyway.

■ Draws an ellipse or elliptical arc on medium. The center of the ellipse is specified by center-
x and center-y.

This function is the same as draw-ellipse, except that the center position is expressed as its

x and y coordinates, instead of as a point. See the function draw-ellipse.

■ Two vectors, radius-1-dx, radius-1-dy, and radius-2-dx, radius-2-dy specify

the bounding parallelogram of the ellipse. Those two vectors must not be collinear in order for the

ellipse to be well defined. The special case of an ellipse with its major axes aligned with the coordi-

nate axes can be obtained by setting both radius-1-dy and radius-2-dx to 0. For more infor-

mation about the bounding parallelogram of an ellipse, see the section 3.6.8 Ellipses and elliptical
arcs in CLIM.

start-angle and end-angle enable you to draw an arc rather than a complete ellipse.

Angles are measured with respect to the positive x axis. The elliptical arc runs positively from

start-angle to end-angle. The angles are measured from the positive x axis toward the pos-

itive y axis. In a right-handed coordinate system this direction is counter-clockwise.

The defaults for start-angle and end-angle are nil (that is, there is no default). If you

supply start-angle, then end-angle defaults to 2π. If you supply end-angle, then start-
angle defaults to 0.

filled specifies whether the ellipse should be filled, a boolean value.

In the case of a filled arc, the figure drawn is the pie slice area swept out by a line from the center

of the ellipse to a point on the boundary as the boundary point moves from start-angle to end-
angle.

When drawing unfilled ellipses, the current line style affects the drawing as usual, except that the

joint shape has no effect. The dashing of an elliptical arc starts at start-angle.

Both draw-ellipse* and draw-ellipse call medium-draw-ellipse* to do the actual draw-

ing.

draw-circle [Function]

Arguments: medium center radius &key (filled t) start-angle end-angle
line-style line-thickness line-unit line-dashes
line-cap-shape ink clipping-region transformation

■ Draws a circle or arc on medium. The center of the circle is specified by the point center, and

the radius is specified by radius.

This function is the same as draw-circle*, except that the center position is expressed as a

point instead of x and y. See the function draw-circle*.

start-angle and end-angle enable you to draw an arc rather than a complete circle in the

same manner as that of the ellipse functions. See the function draw-ellipse*. The defaults for

start-angle and end-angle are nil (that is, there is no default).

filled specifies whether the circle should be filled, a boolean value.
CLIM 2.2 User Guide 35

draw-circle* [Function]

Arguments: medium center-x center-y radius &key (filled t) start-angle
end-angle line-style line-thickness line-unit line-dashes
line-cap-shape ink clipping-region transformation

■ Draws a circle or arc on medium. The center of the circle is specified by center-x and

center-y, and the radius is specified by radius.

start-angle and end-angle enable you to draw an arc rather than a complete circle in the

same manner as that of the ellipse functions. See the function draw-ellipse*.

The defaults for start-angle and end-angle are nil (that is, there is no default).

filled specifies whether the circle should be filled, a boolean value.

draw-oval [Function]

Arguments: stream point-1 x-radius y-radius &key (filled t) line-style
line-thickness line-unit line-dashes line-cap-shape ink
clipping-region transformation

■ Draws an oval, that is, a race-track shape, centered on point-1, a point object. If x-radius
or y-radius is 0, draws a circle with the specified non-zero radius; otherwise, draws the figure that

results from drawing a rectangle with dimensions x-radius and y-radius and then replacing

the two short sides with semicircular arc of appropriate size.

draw-oval* [Function]

Arguments: stream center-x center-y x-radius y-radius &key (filled t)
line-style line-thickness line-unit line-dashes
line-cap-shape ink clipping-region transformation

■ Draws an oval, that is, a race-track shape, centered on (center-x center-y): if x-radius or

y-radius is 0, draws a circle with the specified non-zero radius; otherwise, draws the figure that

results from drawing a rectangle with dimensions x-radius and y-radius and then replacing

the two short sides with semicircular arc of appropriate size.

draw-bezier-curve [Function]

Arguments: medium points &key (filled nil) line-style line-thickness
line-unit line-dashes line-cap-shape ink clipping-region
transformation

■ Fits and draws a Bezier curve using the points specified by points.

draw-bezier-curve* [Function]

Arguments: medium position-seq &key (filled nil) line-style
line-thickness line-unit line-dashes line-cap-shape ink
clipping-region transformation

■ Fits and draws a Bezier curve using the points specified by position-seq.

draw-text [Function]

Arguments: medium text point &key (start 0) end (align-x :left)
(align-y :baseline) text-style text-family text-face
text-size ink clipping-region transformation towards-point
transform-glyphs

■ Draws text onto medium starting at the position specified by point.
36 CLIM 2.2 User Guide

This function is the same as draw-text*, except that the position is expressed as a point

instead of as x and y coordinate values. See the function draw-text* defined next.

IMPLEMENTATION LIMITATION: In the current release, text can only be vertical or horizon-

tal. The system will determine which or vertical or horizontal most closely corresponds with the

:towards-point argument. If text is printed vertically, each glyph is rotated appropriately

regardless of the value of :transform-glyphs.

draw-text* [Function]

Arguments: medium text x y &key (start 0) end (align-x :left)
(align-y :baseline) text-style text-family text-face
text-size ink clipping-region transformation towards-x
towards-y transform-glyphs

■ Draws text onto medium starting at the position specified by x and y. The exact definition of

starting at is dependent on align-x and align-y; by default, the first glyph is drawn with its left

edge and its baseline at the position specified by x and y.

■ The arguments are designed to behave as follows:

align-x

Specifies the horizontal placement of the text string. It can be one of :left (the default),

:right, or :center.

:left means that the left edge of the first character of the string is at the specified x coordinate.

:rightmeans that the right edge of the last character of the string is at the specified x coordinate.

:center means that the string is horizontally centered over the specified x coordinate.

align-y

Specifies the vertical placement of the string. It can be one of :baseline (the default), :top,

:bottom, or :center.

:baseline means that the baseline of the string is placed at the specified y coordinate. :top
means that the top of the string is at the specified y coordinate. :bottom means that the bottom

of the string is at the specified y coordinate. :center means that the string is vertically centered

over the specified y coordinate.

start

end

Specify what part of text to draw. start defaults to 0 and end defaults to the end of the string.

towards-x

towards-y

transform-glyphs

The line drawn between (x,y) and (towards-x,towards-y) give the baseline along which the

glyphs should be placed. The glyphs are rotated so that their baseline is parallel to this baseline if

and only if transform-glyphs is t.

IMPLEMENTATION LIMITATION: In this release, text can only be vertical or horizontal. The

system will determine which or vertical or horizontal most closely corresponds with the

:towards-x and :towards-y arguments. If text is printed vertically, each glyph is rotated

appropriately regardless of the value of :transform-glyphs.

Both draw-text* and draw-text call medium-draw-text* to do the actual drawing.
CLIM 2.2 User Guide 37

3.4 Medium-level drawing functions in CLIM

The medium-level drawing functions are the lowest level, portable functions for doing graphical output.

They bypass all other high-level facilities, including output recording. They take no drawing options

because these are extracted from the medium. You should use these when performance is the most impor-

tant.

medium-draw-point* [Generic function]

Arguments: medium x y

■ Draws a point on the medium medium. The point is drawn at (x,y), transformed by the medium's

current transformation. The ink, clipping region, and line style are gotten from the medium.

medium-draw-points* [Generic function]

Arguments: medium position-seq

Draws a set of points on the medium medium. position-seq is a sequence of coordinate pairs,

which are real numbers. It is an error if position-seq does not contain an even number of elements.

The coordinates in position-seq are transformed by the medium's current transformation. The ink,

clipping region, and line style are gotten from the medium.

medium-draw-line* [Generic function]

Arguments: medium x1 y1 x2 y2

■ Draws a line on the medium medium. The line is drawn from (x1,y1) to (x2,y2), with the start

and end positions transformed by the medium's current transformation. The ink, clipping region, and

line style are gotten from the medium.

medium-draw-lines* [Generic function]

Arguments: medium position-seq

■ Draws a set of disconnected lines on the medium medium. position-seq is a sequence of

coordinate pairs, which are real numbers. It is an error if position-seq does not contain an even

number of elements. The coordinates in position-seq are transformed by the medium's current

transformation. The ink, clipping region, and line style are gotten from the medium.

medium-draw-rectangle* [Generic function]

Arguments: medium x1 y1 x2 y2 filled

■ Draws a rectangle on the medium medium. The corners of the rectangle are at (x1,y1) and

(x2,y2), with the corner positions transformed by the medium's current transformation. If filled
is t, the rectangle is filled, otherwise it is not. The ink, clipping region, and line style are gotten from

the medium.

medium-copy-area [Generic function]

Arguments: from-medium from-x from-y width height to-medium to-x to-y
&optional (boole-fun boole-1)

■ Copies the pixels from from-medium starting at the position specified by (from-x,from-y)

to the position (to-x,to-y) on to-medium. A rectangle whose width and height is specified by

width and height is copied. from-x, from-y, to-x, and to-y are specified in user coordi-

nates. (If medium is a sheet or a stream, then from-x and from-y are transformed by the user

transformation.)
38 CLIM 2.2 User Guide

■ The pixels are copied as if with the boolean operation specified by boole-fun. The value of that

argument should one of the boole-xxx constants and defaults to boole-1, meaning that the

source bits are set into the destination.

Arguments:

medium-draw-rectangles* [Generic function]

Arguments: medium position-seq filled

■ Draws a set of rectangles on the medium medium. position-seq is a sequence of coordinate

pairs, which are real numbers. It is an error if position-seq does not contain an even number of

elements. The coordinates in position-seq are transformed by the medium's current transforma-

tion. If filled is t, the rectangle is filled, otherwise it is not. The ink, clipping region, and line style

are gotten from the medium.

medium-draw-polygon* [Generic function]

Arguments: medium position-seq closed filled

■ Draws a polygon or polyline on the medium medium. position-seq is a sequence of coordi-

nate pairs, which are real numbers. It is an error if position-seq does not contain an even number

of elements. The coordinates in position-seq are transformed by the medium's current transfor-

mation.

If filled is t, the polygon is filled, otherwise it is not. If closed is t, the coordinates in

position-seq are considered to define a close polygon, otherwise the polygon will not be closed.

The ink, clipping region, and line style are gotten from the medium.

medium-draw-ellipse* [Generic function]

Arguments: medium center-x center-y radius-1-dx radius-1-dy
radius-2-dx radius-2-dy start-angle end-angle filled

IMPLEMENTATION LIMITATION: Because of limitations in X, only ellipses with axes

aligned with the X and Y axes will be drawn. If you specify an ellipse with other axes, X (and thus

CLIM) will draw an ellipse with aligned axes anyway.

■ Draws an ellipse on the medium medium. The center of the ellipse is at (x,y), and the radii are

specified by the two vectors (radius-1-dx, radius-1-dy) and (radius-2-dx,radius-2-
dy). The center point and radii are transformed by the medium's current transformation.

start-angle and end-angle are real numbers that specify an arc rather than a complete

ellipse. The medium transformation must be applied to the angles as well. If filled is t, the ellipse

is filled, otherwise it is not. The ink, clipping region, and line style are gotten from the medium.

medium-draw-text* [Generic function]

Arguments: medium string-or-char x y start end align-x align-y
towards-x towards-y transform-glyphs

■ Draws a character or a string (specified by the string-or-char argument) on the medium

medium. The text is drawn starting at (x,y), and towards (toward-x,toward-y); these positions

are transformed by the medium's current transformation. The individual; glyphs are rotated to align

with the line of text as transform-glyphs is true of false. The ink, clipping region, and line style

are gotten from the medium.

IMPLEMENTATION LIMITATION: In the current release, text can only be vertical or horizon-

tal. The system will determine which or vertical or horizontal most closely corresponds with the

towards-x and towards-y arguments. If text is printed vertically, each glyph is rotated appro-

priately regardless of the value of transform-glyphs.
CLIM 2.2 User Guide 39

3.5 Pixmaps in CLIM

A pixmap can be thought of as an off-screen window, that is, a medium that can be used for graphical output,

but is not visible on any display device. Pixmaps are provided to allow a programmer to generate a piece of

output associated with some display device that can then later be rapidly drawn on a real display device.

For example, an electrical CAD system might generate a pixmap that corresponds to a complex, frequently

used part in a VLSI schematic, and then use draw-pixmap or copy-from-pixmap to draw the part

as needed.

The exact representation of a pixmap is explicitly unspecified.

Note that there is no interaction between the pixmap operations and output recording, that

is, displaying a pixmap on a sheet is a pure drawing operation that affects only the display, not the

output history. Some mediums may not support pixmaps (such as PostScript mediums); in this

case, an error will be signaled.

copy-to-pixmap [Function]

Arguments: medium medium-x medium-y width height
&optional pixmap (pixmap-x 0) (pixmap-y 0)
(boole-fun boole-1)

■ Copies the pixels from the medium medium starting at the position specified by (medium-
x,medium-y) into the pixmap pixmap at the position specified by (pixmap-x,pixmap-y). A

rectangle whose width and height is specified by width and height is copied. medium-x and

medium-y are specified in user coordinates. (If medium is a sheet or a stream, then medium-x
and medium-y are transformed by the user transformation.)

If pixmap is not supplied, a new pixmap will be allocated. Otherwise, pixmap must be an

object returned by allocate-pixmap that has the appropriate characteristics for medium.

The pixels are copied as if with the boolean operation specified by boole-fun. The value of

that argument should one of the boole-xxx constants and defaults to boole-1, meaning that the

source bits are set into the destination.

Note that copy-to-pixmap does not record any information on an output record. draw-
pixmap and draw-pixmap* both do add to the output record.

■ The returned value is the pixmap.

copy-from-pixmap [Function]

Arguments: pixmap pixmap-x pixmap-y width height medium medium-x
medium-y &optional (boole-fun boole-1)

■ Copies the pixels from the pixmap pixmap starting at the position specified by (pixmap-
x,pixmap-y) into the medium medium at the position (medium-x,medium-y). A rectangle

whose width and height is specified by width and height is copied. medium-x and medium-
y are specified in user coordinates. (If medium is a sheet or a stream, then medium-x and

medium-y are transformed by the user transformation.)

pixmap must be an object returned by allocate-pixmap that has the appropriate charac-

teristics for medium.

As for copy-to-pixmap, the pixels are copied as if with the boolean operation specified by

boole-fun. The value of that argument should one of the boole-xxx constants and defaults to

boole-1, meaning that the source bits are set into the destination.

■ The returned value is the pixmap.
40 CLIM 2.2 User Guide

draw-pixmap* [Function]

Arguments: medium pixmap x y &rest args &key :ink :clipping-region
:transformation (:function boole-1)

■ Draws the pixmap pixmap on medium at the position (x,y). pixmap is a pixmap created by

using copy-area or with-output-to-pixmap. Unlike copy-area, draw-pixmap* will

create a ‘‘pixmap output record’’ when called on an output recording stream.

■ :ink, :clipping-region, :transformation are the usual sort of drawing options.

:function is a boolean operator that specifies how pixmap should be combined with the desti-

nation; it is the same as for copy-area.

draw-pixmap [Function]

Arguments: medium pixmap point &rest args &key :ink :clipping-region
:transformation (:function boole-1)

■ Draws the pixmap pixmap on medium at the position point. This function is the same as

draw-pixmap*, except that the position is specified by a point object, not by an X/Y position.

copy-area [Generic function]

Arguments: medium from-x from-y width height to-x to-y
&optional (boole-fun boole-1)

■ Copies the pixels from the medium medium starting at the position specified by (from-
x,from-y) to the position (to-x,to-y) on the same medium. A rectangle whose width and height

is specified by width and height is copied. from-x, from-y, to-x, and to-y are specified in

user coordinates. (If medium is a sheet or a stream, then from-x and from-y are transformed by

the user transformation.)

■ As for copy-to-pixmap, the pixels are copied as if with the boolean operation specified by

boole-fun. The value of that argument should one of the boole-xxx constants and defaults to

boole-1, meaning that the source bits are set into the destination.

allocate-pixmap [Function]

Arguments: medium width height

■ Allocates and returns a pixmap object that can be used on any medium that shares the same char-

acteristics as medium. (The exact definition of ‘shared characteristics’ will vary from host to host.)

medium can be a medium, a sheet, or a stream.

The resulting pixmap will be width units wide, height units high, and as deep as is necessary

to store the information for the medium.

■ The returned value is the pixmap.

deallocate-pixmap [Function]

Arguments: pixmap

■ Deallocates the pixmap pixmap.

pixmap-width [Generic function]

Arguments: pixmap

■ Returns the width of the pixmap pixmap.

pixmap-height [Generic function]

Arguments: pixmap

■ Returns the height of the pixmap pixmap.
CLIM 2.2 User Guide 41

pixmap-depth [Generic function]

Arguments: pixmap

■ Returns the depth of the pixmap pixmap.

with-output-to-pixmap [Macro]

Arguments: (medium-var medium &key width height) &body body

■ Binds medium-var to a pixmap medium, that is, a medium that does output to a pixmap with

the characteristics appropriate to the medium medium, and then evaluates body in that context. All

the output done to the medium designated by medium-var inside of body is drawn on the pixmap

stream. CLIM implementations are permitted, but not required, to have pixmap mediums support the

stream output protocol (write-char and write-string).

medium-var must be a symbol; it is not evaluated.

■ width and height are integers that give the width and height of the pixmap. If they are unsup-

plied, the with-output-to-output-record is called to determine the size and then the out-

put record is replayed on the pixmap stream. As a consequence, operations such as window-clear
will operate on the wrong stream. Specify width and height if this is a problem.

■ The returned value is a pixmap that can be drawn onto medium using copy-from-pixmap.

3.5.1 Example of Using CLIM Pixmaps

If you run the following code, it will wait for you to input a rectangular region, then it will copy the region

into a pixmap. It will then wait for you to indicate another spot on the window stream, and will copy the

pixmap out into the new place.

(defun test-copy-area (&optional (function boole-1) (stream *standard-output*))
 (let ((medium (clim:sheet-medium stream)))
 (multiple-value-bind (left top right bottom)
 (clim:pointer-input-rectangle* :stream stream)
 (let ((pixmap (clim:copy-to-pixmap
 medium left top (- right left) (- bottom top))))
 (multiple-value-bind (x y)
 (block get-position
 (clim:tracking-pointer (stream)
 (:pointer-button-press (x y)
 (return-from get-position (values x y)))))
 (clim:copy-from-pixmap pixmap 0 0 (- right left) (- bottom top)
 medium x y function))))))

The next example creates a pixmap using with-output-to-pixmap, and then displays the result at

the place you click on.

(defun test-pixmaps (&optional (stream *standard-output*))
 (let ((medium (clim:sheet-medium stream)))
 (let ((pixmap (clim:with-output-to-pixmap (mv medium)
 (clim:formatting-table (mv)
 (dotimes (i 5)
 (clim:formatting-row (mv)
 (clim:formatting-cell (mv) (princ i mv))
 (clim:formatting-cell (mv) (princ (* i 2) mv)))))
 (clim:draw-circle* mv 50 50 20 :filled t)
42 CLIM 2.2 User Guide

 (clim:draw-rectangle* mv 0 0 90 90 :filled nil))))
 (multiple-value-bind (x y)
 (block get-position
 (clim:tracking-pointer (stream)
 (:pointer-button-press (x y)
 (return-from get-position (values x y)))))
 (clim:copy-from-pixmap
 pixmap 0 0 (clim:pixmap-width pixmap) (clim:pixmap-height pixmap)
 medium x y)))))

3.6 General geometric objects and regions in CLIM

A region is an object that denotes a set of points in the plane. Regions include their boundaries, that is, they

are closed. Regions have infinite resolution.

A bounded region is a region that contains at least one point and for which there exists a number, d, called

the region's diameter, such that if p1 and p2 are points in the region, the distance between p1 and p2 is always

less than or equal to d.

An unbounded region either contains no points or contains points arbitrarily far apart.

Another way to describe a region is that it maps every (x,y) pair into either true or false (meaning member,

or not a member, respectively, of the region).

The following classes are what CLIM uses to classify the various types of regions. All regions are a sub-

class of region, and all bounded regions are also a subclass of either point, path, or area. You may

wish to subclass these classes to implement such things as graphical editors.

region [Class]

■ The protocol class that corresponds to a closed set of points. If you want to create a new class that

obeys the region protocol, it must be a subclass of region.

point [Class]

■ The protocol class that corresponds to a mathematical point. If you want to create a new class that

obeys the point protocol, it must be a subclass of point.

path [Class]

■ This is a subclass of region that denotes regions that have dimensionality 1. If you want to cre-

ate a new class that obeys the path protocol, it must be a subclass of path.

Making a path object with no length canonicalizes it to +nowhere+. When paths are used to

construct an area by specifying its outline, they need to have a direction associated with them.

area [Class]

■ This is a subclass of region that denotes regions that have dimensionality 2 (that is, have area).

If you want to create a new class that obeys the area protocol, it must be a subclass of area.

Making an area object with no area canonicalizes it to +nowhere+.

The following two constants represent the regions that correspond, respectively, to all of the points on the

drawing plane and none of the points on the drawing plane.

+everywhere+ [Constant]

■ The region that includes all the points on the infinite drawing plane. This is the opposite of

+nowhere+.
CLIM 2.2 User Guide 43

+nowhere+ [Constant]

■ The empty region (the opposite of +everywhere+).

3.6.1 Region predicates in CLIM

The following functions can be used to examine certain aspects of regions, such as whether two regions are

equal or if they overlap.

region-equal [Generic function]

Arguments: region1 region2

■ Returns t if region1 and region2 contain exactly the same set of points, otherwise returns

nil.

region-contains-region-p [Generic function]

Arguments: region1 region2

■ Returns t if all points in region2 are members of region1, otherwise returns nil.

region-contains-position-p [Generic function]

Arguments: region x y

■ Returns t if the point (x,y) is contained in region, otherwise returns nil. Since regions in

CLIM are closed, this will return t if (x,y) is on the region's boundary. This is a special case of

region-contains-region-p.

region-intersects-region-p [Generic function]

Arguments: region1 region2

■ Returns nil if region-intersection of the two regions would be +nowhere+, otherwise

returns t.

3.6.2 Composition of CLIM regions

Region composition in CLIM is the process in which two regions are combined in some way (such as union

or intersection) to produce a third region.

Since all regions in CLIM are closed, region composition is not always equivalent to simple set opera-

tions. Instead, composition attempts to return an object that has the same dimensionality as one of its argu-

ments. If this is not possible, then the result is defined to be an empty region, which is canonicalized to

+nowhere+. (The exact details of this are specified with each function.)

Sometimes, composition of regions can produce a result that is not a simple contiguous region. For exam-

ple, region-union of two rectangular regions might not be rectangular. In order to support cases like

this, CLIM has the concept of a region set, which is an object that represents one or more region objects

related by some region operation, usually a union.

region-union [Generic function]

Arguments: region1 region2

■ Returns a region that contains all points that are in either region1 or region2 (possibly with

some points removed to satisfy the dimensionality rule).
44 CLIM 2.2 User Guide

■ The result of region-union always has dimensionality that is the maximum dimensionality of

region1 and region2. For example, the union of a path and an area produces an area; the union

of two paths is a path.

region-intersection [Generic function]

Arguments: region1 region2

■ Returns a region that contains all points that are in both region1 and region2 (possibly with

some points removed to satisfy the dimensionality rule). The result of region-intersection
has dimensionality that is the minimum dimensionality of region1 and region2, or is

+nowhere+. For example, the intersection of two areas is either another area or +nowhere+; the

intersection of two paths is either another path or +nowhere+; the intersection of a path and an area

produces the path clipped to stay inside of the area.

region-difference [Generic function]

Arguments: region1 region2

■ Returns a region that contains all points in region1 that are not in region2 (plus additional

boundary points to make the result closed). The result of region-difference has the same

dimensionality as region1, or is +nowhere+. For example, the difference of an area and a path

produces the same area; the difference of a path and an area produces the path clipped to stay outside

of the area.

region-set [Class]

■ The class that represents region sets; a subclass of region.

region-set-function [Generic function]

Arguments: region

■ Returns a symbol representing the operation that relates the regions in region. This will be one

of the Common Lisp symbols union, intersection, or set-difference. For the case of

region sets that are composed entirely of rectangular regions, CLIM canonicalizes the set so that the

symbol will always be union. If region is a region that is not a region-set, the result is always

union.

region-set-regions [Generic function]

Arguments: region &key normalize

■ Returns a sequence of the regions in region. region can be either a region-set or any

member of region, in which case the result is simply a sequence of one element: region. For the

case of region sets that are unions of rectangular regions, CLIM canonicalizes the set so that the rect-

angles returned by region-set-regions are guaranteed not to overlap.

If normalize is supplied, it may be :x-banding or :y-banding. If it is :x-banding
and all the regions in region are rectangles, the result is normalized by merging adjacent rectangles

with banding done in the x direction. If it is :y-banding and all the regions in region are rect-

angles, the result is normalized with banding done in the y direction.

■ Normalizing a region set that is not composed entirely of rectangles using x- or y-banding causes

CLIM to signal the region-set-not-rectangular error.

map-over-region-set-regions [Generic function]

Arguments: function region &key normalize

■ Calls function on each region in region. This is often more efficient than calling region-
set-regions. region can be either a region-set or any member of region, in which case

function is called once on region itself. normalize is as in region-set-regions.
CLIM 2.2 User Guide 45

3.6.3 CLIM point objects

A point is a mathematical point in the drawing plane, which is identified by its coordinates, a pair of real

numbers. Points have neither area nor length. Note that a point is not the same thing as a pixel; CLIM's

model of the drawing plane has continuous coordinates.

You can create point objects and use them as arguments to the drawing functions. Alternatively, you can

use the spread versions of the drawing functions, that is the drawing functions with stars appended to their

names. For example, instead of draw-point, use draw-point* which take two arguments specifying

a point by its coordinates. (Note that we generally recommend the use of the spread versions, since the

CLIM implementation is optimized for those functions.)

The operations for creating and dealing with points are:

point [Class]

■ The protocol class that corresponds to a mathematical point. If you want to create a new class that

obeys the point protocol, it must be a subclass of point.

standard-point [Class]

■ A class that implements a point. This is the class that make-point instantiates.

make-point [Function]

Arguments: x y

■ Creates and returns a point object whose coordinates are x and y. The point object is an instance

of standard-point.

point-position [Generic function]

Arguments: point

■ Returns two values, the x and y coordinates of point.

point-x [Generic function]

Arguments: point

■ Returns the x coordinate of point.

point-y [Generic function]

Arguments: point

■ Returns the y coordinate of point.

3.6.4 Polygons and polylines in CLIM

A polyline is a path that consists of one or more line segments joined consecutively at their end-points. A

line is a polyline that has only a single segment.

Polylines that have the end-point of their last line segment coincident with the start-point of their first line

segment are called closed; this use of the term ‘closed’ should not be confused with closed sets of points.

A polygon is an area bounded by a closed polyline.

If the boundary of a polygon intersects itself, the odd-even winding-rule defines the polygon: a point is

inside the polygon if a ray from the point to infinity crosses the boundary an odd number of times.
46 CLIM 2.2 User Guide

The classes that correspond to polylines and polygons are:

polyline [Class]

■ The protocol class that corresponds to a polyline. This is a subclass of path. If you want to create

a new class that obeys the polyline protocol, it must be a subclass of polyline.

polygon [Class]

■ The protocol class that corresponds to a mathematical polygon. This is a subclass of area. If you

want to create a new class that obeys the polygon protocol, it must be a subclass of polygon.

standard-polyline [Class]

■ A class that implements a polyline. This is a subclass of polyline. This is the class that make-
polyline and make-polyline* instantiate.

standard-polygon [Class]

■ A class that implements a polygon. This is a subclass of polygon.

■ This is the class that make-polygon and make-polygon* instantiate.

make-polygon [Function]

Arguments: point-seq

■ Makes an object of class standard-polygon consisting of the area contained in the boundary

that is specified by the segments connecting each of the points in point-seq.

make-polygon* [Function]

Arguments: coord-seq

■ Makes an object of class standard-polygon consisting of the area contained in the boundary

that is specified by the segments connecting each of the points represented by the coordinate pairs in

coord-seq.

make-polyline [Function]

Arguments: point-seq &key closed

■ Makes an object of class standard-polyline consisting of the segments connecting each of

the points in point-seq.

■ If closed is t, the segment connecting the first point and the last point is included in the

polyline.

make-polyline* [Function]

Arguments: coord-seq &key closed

■ Makes an object of class standard-polyline consisting of the segments connecting each of

the points represented by the coordinate pairs in coord-seq.

■ If closed is t, the segment connecting the first point and the last point is included in the

polyline.

polyline-closed [Generic function]

Arguments: polyline

■ Returns t if polyline is closed, otherwise returns nil.
CLIM 2.2 User Guide 47

polygon-points [Generic function]

Arguments: polygon

■ Returns a sequence of points that specify the segments in polygon.

map-over-polygon-coordinates [Generic function]

Arguments: function polygon

■ Applies function to all of the coordinates of the vertices of polygon. The function takes

two arguments, the x and y coordinates.

map-over-polygon-segments [Generic function]

Arguments: function polygon

■ Applies function to the line segments that compose polygon. The function takes four

arguments, the x and y coordinates of the start of the line segment, and the x and y coordinates of the

end of the line segment.

■ When map-over-polygon-segments is called on a closed polyline, it will call function
on the line segment that connects the last point back to the first point.

3.6.5 Lines in CLIM

A line is a special case of a polyline that has only a single segment. The functions for making and dealing

with line are the following:

line [Class]

■ The protocol class that corresponds to a mathematical line-segment, that is, a polyline with only

a single segment. This is a subclass of polyline. If you want to create a new class that obeys the

line protocol, it must be a subclass of line.

standard-line [Class]

■ A class that implements a line. This is a subclass of line. This is the class that make-line and

make-line* instantiate.

make-line [Function]

Arguments: start-point end-point

■ Makes an object of class standard-line that connects start-point to end-point.

make-line* [Function]

Arguments: start-x start-y end-x end-y

■ Makes an object of class standard-line that connects (start-x, start-y) to (end-x,

end-y).

line-start-point [Generic function]

Arguments: line

■ Returns the starting point of line.

line-end-point [Generic function]

Arguments: line

■ Returns the ending point of line.
48 CLIM 2.2 User Guide

line-start-point* [Generic function]

Arguments: line

■ Returns the starting point of line as two values representing the coordinate pair.

line-end-point* [Generic function]

Arguments: line

■ Returns the ending point of line as two values representing the coordinate pair.

3.6.6 Rectangles in CLIM

A rectangle is a special case of a four-sided polygon whose edges are parallel to the coordinate axes. A rect-

angle can be specified completely by four real numbers (min-x, min-y, max-x, max-y). They are not

closed under affine transformations.

The functions for creating and dealing with rectangles are the following:

rectangle [Class]

■ The protocol class that corresponds to an axis-aligned mathematical rectangle, that is, rectangular

polygons whose sides are parallel to the coordinate axes. This is a subclass of polygon. If you want

to create a new class that obeys the rectangle protocol, it must be a subclass of rectangle.

standard-rectangle [Class]

■ A class that implements a rectangle. This is a subclass of rectangle. This is the class that

make-rectangle and make-rectangle* instantiate.

make-rectangle [Function]

Arguments: min-point max-point

■ Makes an object of class standard-rectangle whose edges are parallel to the coordinate

axes. One corner is at min-point and the opposite corner is at max-point.

make-rectangle* [Function]

Arguments: min-x min-y max-x max-y

■ Makes an object of class standard-rectangle whose edges are parallel to the coordinate

axes. One corner is at (min-x, min-y) and the opposite corner is at (max-x,max-y).

The representation of rectangles in CLIM is chosen to be efficient. CLIM represents rectangles by storing

the coordinates of two opposing corners of the rectangle. Because this representation is not sufficient to rep-

resent the result of arbitrary transformations of arbitrary rectangles, CLIM is allowed to return a polygon as

the result of such a transformation. (The most general class of transformations that is guaranteed to always

turn a rectangle object into another rectangle object is the class of transformations that satisfy

rectilinear-transformation-p.)

rectangle-min-point [Generic function]

Arguments: rectangle

■ Returns the minimum point of rectangle. The position of a rectangle is specified by its mini-

mum point.
CLIM 2.2 User Guide 49

rectangle-max-point [Generic function]

Arguments: rectangle

■ Returns the maximum point of rectangle. (The position of a rectangle is specified by its min-

imum point).

rectangle-edges* [Generic function]

Arguments: rectangle

■ Returns the coordinate of the minimum x and y and maximum x and y of rectangle as four

values.

rectangle-min-x [Function]

Arguments: rectangle

■ Returns the coordinate of the minimum x of rectangle.

rectangle-min-y [Function]

Arguments: rectangle

■ Returns the coordinate of the minimum y of rectangle.

rectangle-max-x [Function]

Arguments: rectangle

■ Returns the coordinate of the maximum x of rectangle.

rectangle-max-y [Function]

Arguments: rectangle

■ Returns the coordinate of the maximum y of rectangle.

rectangle-width [Function]

Arguments: rectangle

■ Returns the width of rectangle. The width of a rectangle is the difference between the maxi-

mum x and the minimum x. (The height of a rectangle is difference between the maximum y and the

minimum y.)

rectangle-height [Function]

Arguments: rectangle

■ Returns the height of rectangle. The height is the difference between the maximum y and the

minimum y. (The width of a rectangle is the difference between the maximum x and the minimum x.)

rectangle-size [Function]

Arguments: rectangle

■ Returns two values, the width and the height of rectangle.
50 CLIM 2.2 User Guide

3.6.7 Bounding Rectangles in CLIM

Every bounded region in CLIM has a derived bounding rectangle, which is the smallest rectangle that con-

tains every point in the region, and may contain additional points as well. Unbounded regions do not have

any bounding rectangle. For example, all windows and output records have bounding rectangles whose

coordinates are relative to the bounding rectangle of the parent of the window or output record.

Note that bounding-rectangles are distinct from rectangles. Bounding-rectangles are used internally in

CLIM for a number of purposes. Note that when you are asked to provide a bounding-rectangle, supplying

a rectangle instead may not cause an immediate error but will likely cause a subsequent failure, often one

that is hard to diagnose.

bounding-rectangle [Class]

■ The protocol class that represents a bounding rectangle. Note that bounding rectangles are not a

subclass of rectangle, nor even a subclass of region. This is because in general, bounding rectangles

do not obey the region protocols. However, all bounded rectangles and sheets that obey the bounding

rectangle protocol are subclasses of bounding-rectangle.

standard-bounding-rectangle [Class]

■ An instantiable class that implements a bounding rectangle. this is a subclass of both rectangle and

bounding-rectangle, that is standard bounding rectangles obey the rectangle protocol. make-bound-

ing-rectangle returns an object of this class.

make-bounding-rectangle [Function]

Arguments: x1 y1 x2 y2

■ Returns an object of the class standard-bounding-rectangle with the edges specified

by the arguments, which must be real numbers. Two opposite corners of the resulting bounding rect-

angle have coordinates ((min x1 x2), (min y1 y2)) and ((max x1 x2), (max y1 y2)),

with the other two corners determined in the obvious way.

The following functions can be used to access the bounding rectangle of a region.

bounding-rectangle* [Generic function]

Arguments: region

■ Returns the bounding rectangle of region as four real numbers specifying the left, top, right,

and bottom edges of the bounding rectangle. region must be a bounded region, such as an output

record, a window, or a geometric object such as a line or an ellipse.

■ The coordinates of the bounding rectangle of windows and output records are maintained relative

to the parent of the window or output record.

bounding-rectangle [Generic function]

Arguments: region &optional reuse-rectangle

■ Returns the bounding rectangle of region as a rectangle object. region is as for

bounding-rectangle*.
CLIM 2.2 User Guide 51

bounding-rectangle-min-x [Function]

Arguments: region

bounding-rectangle-left [Function]

Arguments: region

■ Returns the coordinate of the left edge of the bounding rectangle of region. region is as for

bounding-rectangle*.

bounding-rectangle-min-y [Function]

Arguments: region

bounding-rectangle-top [Function]

Arguments: region

■ Returns the coordinate of the top edge of the bounding rectangle of region. region is as for

bounding-rectangle*.

bounding-rectangle-max-x [Function]

Arguments: region

bounding-rectangle-right [Function]

Arguments: region

■ Returns the coordinate of the right edge of the bounding rectangle of region. region is as for

bounding-rectangle*.

bounding-rectangle-max-y [Function]

Arguments: region

bounding-rectangle-bottom [Function]

Arguments: region

■ Returns the coordinate of the bottom edge of the bounding rectangle of region. region is as

for bounding-rectangle*.

bounding-rectangle-size [Function]

Arguments: region

■ Returns the size (as two values, width and height) of the bounding rectangle of region.

region is as for bounding-rectangle*.

bounding-rectangle-width [Function]

Arguments: region

■ Returns the width of the bounding rectangle of region. region is as for bounding-
rectangle*.

bounding-rectangle-height [Function]

Arguments: region

■ Returns the height of the bounding rectangle of region. region is as for bounding-
rectangle*.
52 CLIM 2.2 User Guide

For example, the size of a piece of output (produced by a body of code specified by body) can be deter-

mined by calling bounding-rectangle-size on the output record:

(let ((record (clim:with-output-to-output-record (s) body)))
 (multiple-value-bind (width height)
 (clim:bounding-rectangle-size record)
 (format t "~&Width is ~D, height is ~D" width height)))

3.6.8 Ellipses and Elliptical Arcs in CLIM

An ellipse is an area that is the outline and interior of an ellipse. Circles are special cases of ellipses.

An elliptical arc is a path consisting of all or a portion of the outline of an ellipse. Circular arcs are special

cases of elliptical arcs.

An ellipse is specified in a manner that is easy to transform, and treats all ellipses on an equal basis. An

ellipse is specified by its center point and two vectors that describe a bounding parallelogram of the ellipse.

The bounding parallelogram is made by adding and subtracting the vectors from the center point in the fol-

lowing manner:

The special case of an ellipse with its axes aligned with the coordinate axes can be obtained by setting

dx2 = dy1 = 0 or dx1 = dy2 = 0. Note that several different parallelograms specify the same ellipse.

The following classes and functions are used to represent and operate on ellipses and elliptical arcs.

ellipse [Class]

■ The protocol class that corresponds to a mathematical ellipse. This is a subclass of area. If you

want to create a new class that obeys the ellipse protocol, it must be a subclass of ellipse.

elliptical-arc [Class]

■ The protocol class that corresponds to a mathematical elliptical arc. This is a subclass of path.

If you want to create a new class that obeys the elliptical arc protocol, it must be a subclass of

elliptical-arc.

standard-ellipse [Class]

■ A class that implements an ellipse. This is a subclass of ellipse. This is the class that make-
ellipse and make-ellipse* instantiate.

standard-elliptical-arc [Class]

■ A class that implements an elliptical arc. This is a subclass of elliptical-arc. This is the

class that make-elliptical-arc and make-elliptical-arc* instantiate.

x coordinate y coordinate

Center of Ellipse xc yc

Vectors dx1
dx2

dy1
dy2

Corners of parallelogram xc + dx1 + dx2
xc + dx1 - dx2
xc - dx1 - dx2
xc - dx1 + dx2

yc + dy1 + dy2
yc + dy1 - dy2
yc - dy1 - dy2
yc - dy1 + dy2
CLIM 2.2 User Guide 53

make-ellipse [Function]

Arguments: center-point radius-1-dx radius-1-dy radius-2-dx radius-2-
dy &key start-angle end-angle

■ Makes an object of class standard-ellipse. The center of the ellipse is center-point.

This function is the same as make-ellipse* except that the location of the center of the

ellipse is specified as a point rather than as X and Y coordinates.

make-ellipse* [Function]

Arguments: center-x center-y radius-1-dx radius-1-dy radius-2-dx
radius-2-dy &key start-angle end-angle

■ Makes an object of class standard-ellipse. The center of the ellipse is (center-x,

center-y).

■ Two vectors, (radius-1-dx, radius-1-dy) and (radius-2-dx, radius-2-dy) spec-

ify the bounding parallelogram of the ellipse as explained above. It is an error for those two vectors

to be collinear (in order for the ellipse to be well-defined). The special case of an ellipse with its axes

aligned with the coordinate axes can be obtained by setting both radius-1-dy and radius-2-
dx to 0.

If start-angle or end-angle are supplied, the ellipse is the pie slice area swept out by a

line from the center of the ellipse to a point on the boundary as the boundary point moves from

start-angle to end-angle. Angles are measured counter-clockwise with respect to the posi-

tive x axis. If end-angle is supplied, the default for start-angle is 0; if start-angle is

supplied, the default for end-angle is 2π; if neither is supplied then the region is a full ellipse and

the angles are meaningless.

make-elliptical-arc [Function]

Arguments: center-point radius-1-dx radius-1-dy radius-2-dx
radius-2-dy &key start-angle end-angle

■ Makes an object of class standard-elliptical-arc. The center of the ellipse is

center-point.

■ This function is the same as make-elliptical-arc* except that the location of the center

of the arc is specified as a point rather than as X and Y coordinates.

make-elliptical-arc* [Function]

Arguments: center-x center-y radius-1-dx radius-1-dy radius-2-dx
radius-2-dy &key start-angle end-angle

■ Makes an object of class standard-elliptical-arc. The center of the ellipse is

(center-x,center-y).

■ Two vectors, (radius-1-dx, radius-1-dy) and (radius-2-dx, radius-2-dy), spec-

ify the bounding parallelogram of the ellipse as explained above. It is an error for those two vectors

to be collinear (in order for the ellipse to be well-defined). The special case of an elliptical arc with

its axes aligned with the coordinate axes can be obtained by setting both radius-1-dy and

radius-2-dx to 0.

■ The arc is swept from start-angle to end-angle. Angles are measured counter-clockwise

with respect to the positive x axis. If end-angle is supplied, the default for start-angle is 0;

if start-angle is supplied, the default for end-angle is 2π; if neither is supplied then the

region is a closed elliptical path and the angles are meaningless.
54 CLIM 2.2 User Guide

ellipse-center-point [Generic function]

Arguments: ellipse

■ Returns the center point of ellipse.

ellipse-center-point* [Generic function]

Arguments: ellipse

■ Returns the center point of ellipse as two values representing the coordinate pair.

ellipse-radii [Generic function]

Arguments: ellipse

■ Returns four values corresponding to the two radius vectors of ellipse. These values may be

canonicalized in some way, and so may not be the same as the values passed to the constructor func-

tion.

ellipse-start-angle [Generic function]

Arguments: ellipse

■ Returns the start angle of ellipse. If elliptical-object is a full ellipse or closed path

then ellipse-start-angle will return nil; otherwise the value will be a number greater than

or equal to zero, and less than 2π.

ellipse-end-angle [Generic function]

Arguments: ellipse

■ Returns the end angle of ellipse. If elliptical-object is a full ellipse or closed path

then ellipse-end-angle will return nil; otherwise the value will be a number greater than

zero, and less than or equal to 2π.
CLIM 2.2 User Guide 55

[This page intentionally left blank.]
56 CLIM 2.2 User Guide

Chapter 4 The CLIM drawing
environment

4.1 Introduction to CLIM drawing environments

There are a number of factors which affect drawing in CLIM. Drawing might be affected by transforma-

tions, line style and text style options, clipping, and by the ink that is used. All of these are controlled by the

drawing environment.

When you draw in CLIM, you do so on a medium. A medium can be thought of as a drawing surface plus

a graphics context in which the medium keeps track of its drawing environment, which consists of the cur-

rent transformation, text style, foreground and background inks, and so forth.

The drawing environment is dynamic. The CLIM facilities for affecting the drawing environment do so

within their dynamic extent. For example, drawing done by any CLIM drawing function (such as draw-
line or draw-text) below will be affected by the scaling transformation. First we draw a line and text

outside the with-scaling, then inside:

(draw-line* *test-pane 100 50 200 75)
(draw-text* *test-pane* "some text" (floor (+ 100 200) 2) (floor (+ 50 75) 2))

(with-scaling (*test-pane* 2 1)
 (draw-line* *test-pane 100 50 200 75)
(draw-text* *test-pane* "some text" (floor (+ 100 200) 2) (floor (+ 50 75) 2)))

The following figure shows the results of both operations. The line and text on the left are unscaled. Those

on the right are scaled. Note that the size of the text is unaffected by scaling.

Edge of pane

Unscaled line and text Scaled line and text
CLIM 2.2 User Guide 57

4.1.1 Components of CLIM Mediums

Each CLIM medium contains components that correspond to the drawing options. These components pro-

vide the default values for the drawing options. When drawing functions are called and some options are

unspecified, the options default to the values maintained by the medium.

CLIM provides accessors which enable you to read and write the values of these components. Also, these

components are temporarily bound within a dynamic context by using with-drawing-options,

with-text-style, and related forms. Using setf of a component while it is temporarily bound takes

effect immediately but is undone when the dynamic context is exited.

medium-foreground [Generic function]

Arguments: medium

■ Returns the current foreground design of the medium. You can use setf on medium-
foreground to change the foreground design. You must not set the foreground ink to an indirect

ink.

medium-background [Generic function]

Arguments: medium

■ Returns the current background design of the medium. You can use setf on medium-
background to change the background design. You must not set the background ink to an indirect

ink.

medium-ink [Generic function]

Arguments: medium

■ Returns the current drawing ink of the medium. You can use setf on medium-ink to change

the current ink, or you can use the :ink drawing option to any of the drawing functions or to with-
drawing-options.

medium-transformation [Generic function]

Arguments: medium

■ Returns the current user transformation of the medium. You can use setf on medium-
transformation to change the current transformation, or you can use the :transformation
drawing option to any of the drawing functions or to with-drawing-options.

■ When CLIM's actually draws at the device level, the user transformation is composed with the

sheet's device transformation.

medium-clipping-region [Generic function]

Arguments: medium

■ Returns the current user clipping region of the medium. You can use setf on medium-
clipping-region to change the clipping region, or you can use the :clipping-region
drawing option to any of the drawing functions or to with-drawing-options.

■ When CLIM's actually draws at the device level, the user clipping region is intersected with the

sheet's device region.

■ In the current implementation of CLIM, the clipping region must be either a bounding rectangle

or a rectangle set of bounding rectangles.
58 CLIM 2.2 User Guide

medium-line-style [Generic function]

Arguments: medium

■ Returns the current line style of the medium. You can use setf on medium-line-style to

change the line style, or you can use the :line-style drawing option to any of the drawing func-

tions or to with-drawing-options.

medium-text-style [Generic function]

Arguments: medium

■ Returns the current text style of the medium. You can use setf on medium-text-style to

change the current text style, or you can use the :text-style drawing option to any of the drawing

functions or to with-drawing-options.

medium-default-text-style [Generic function]

Arguments: medium

■ The default text style for medium. medium-default-text-stylemust be a fully specified

text style, unlike medium-text-style which can have null components. Any text styles that are

not fully specified by the time they are used for rendering are merged against medium-default-
text-style using merge-text-styles.

■ You can use setf on medium-default-text-style to change the default text style, but

the default text style must be a fully specified text style.

4.2 Using CLIM drawing options

Drawing options control various aspects of the drawing process. You can supply drawing options in a num-

ber of ways:

• The medium (the destination for graphic output) itself has default drawing options. If a drawing

option is not supplied elsewhere, the medium supplies the value.

• You can use with-drawing-options and with-text-style to temporarily bind the

drawing options of the medium. In many cases, it is more convenient and more efficient to use

with-drawing-options to surround several calls to drawing functions, each using the same

options.

• You can supply the drawing options as keyword arguments to the drawing functions. These

override the drawing options specified by with-drawing-options.

In some cases, it is important to distinguish between drawing options and drawing suboptions. Both text

and lines have an option which controls the complete specification of the text and line style, and there are

suboptions which can affect one aspect of the text or line style.

For example, the value of the :text-style option is a text style object, which describes a complete

text style consisting of family, face, and size. There are also suboptions called :text-family, :text-
face, and :text-size. Each suboption specifies a single aspect of the text style, while the option spec-

ifies the entire text style. Line styles are analogous to text styles; there is a :line-style option and some

suboptions, such as :line-thickness and :line-dashes.

In a given call to with-drawing-options or a drawing function, normally you supply either the

:text-style option or a text style suboption (or more than one suboption), but you would not supply

both. If you do supply both, then the text style comes from the result of merging the suboptions with the

:text-style option, and then merging that with the prevailing text style.
CLIM 2.2 User Guide 59

with-drawing-options [Macro]

Arguments: (medium &key ink clipping-region transformation line-style
line-unit line-thickness line-dashes line-joint-shape
line-cap-shape text-style text-family text-face text-size)
&body body

■ Binds the state of medium to correspond to the supplied drawing options, and executes the

bodywith the new drawing options in effect. Each option causes binding of the corresponding com-

ponent of the medium for the dynamic extent of the body.

■ medium can be either a window stream or a Postscript stream.

■ Any call to a drawing function can supply a drawing option to override the prevailing one. In other

words, the drawing functions effectively do a with-drawing-options when drawing option

arguments are supplied to them.

■ The default value specified for a drawing option is the value to which the corresponding compo-

nent of a medium is normally initialized.

invoke-with-drawing-options [Generic function]

Arguments: stream function &key ink clipping-region transformation
line-style line-unit line-thickness line-dashes
line-joint-shape line-cap-shape text-style text-family
text-face text-size

■ This is the functional version of with-drawing-options. All of the arguments, except

function, are the same as for with-drawing-options.

function is a function of one argument, a stream; it is called once all of the drawing options

are in effect on stream.

4.2.1 Set of CLIM drawing options

The drawing options can be any of the following, plus any of the suboptions for line styles and text styles.

:clipping-region [Drawing option]

■ Specifies the region of the drawing plane on which the drawing functions can draw.

The clipping region must be an area and furthermore an error might be signaled if the clipping

region is not a rectangle or a region-set composed of rectangles. Rendering is clipped both by

this clipping region and by other clipping regions associated with the mapping from the target draw-

ing plane to the viewport that displays a portion of the drawing plane. The default is

+everywhere+, which means that no clipping occurs in the drawing plane, only in the viewport.

The :clipping-region drawing option temporarily changes the value of medium-
clipping-region to region-intersection of the argument and the previous value. If

both a clipping region and a transformation are supplied in the same set of drawing options, the clip-

ping region is transformed by the newly composed transformation.

:ink [Drawing option]

■ A design used as the ink for drawing operations. The drawing functions draw with the color and

pattern specified by the :ink option. The default value is +foreground-ink+.

The :ink drawing option temporarily changes the value of medium-ink and replaces the pre-

vious ink; the new and old inks are not combined in any way.

The value of :ink can be:
60 CLIM 2.2 User Guide

• a color

• a dynamic color

• a layered color

• the constant +foreground-color+

• the constant +background-ink+

• a flipping ink

• an opacity or the constant +transparent-ink+ (opacities are not fully supported)

• a design

For more information on how to use the :ink drawing option, see chapter 6 Drawing in color
in CLIM.

:transformation [Drawing option]

■ Transforms the coordinates used as arguments to drawing functions to the coordinate system of

the drawing plane. The default value is +identity-transformation+.

■ The :transformation drawing option temporarily changes the value of medium-
transformation to compose-transformations of the argument and the previous value.

:text-style [Drawing option]

■ Controls how text is rendered, for the graphic drawing functions and ordinary stream output. The

value of the :text-style option is a text style object.

This drawing option temporarily changes the value of medium-text-style to the result of

merging the value of :text-style with the prevailing text style.

If text style suboptions are also supplied, they temporarily change the value of medium-text-
style to the result of merging the supplied suboptions with the :text-style drawing options,

which is then merged with the previous value of medium-text-style.

■ See the section 5.3 CLIM text style suboptions.

:line-style [Drawing option]

■ Controls how lines and arcs are rendered. The value of the :line-style option is a line style

object.

This drawing option temporarily changes the value of medium-line-style.

■ See the section 4.3.2 CLIM line style suboptions.

The following macro causes all of the output of the body to be done with fat lines that butt with a rounded

joint.

(defmacro with-fat-lines ((stream &optional (thickness 5)) &body body)
 `(clim:with-drawing-options (,stream :line-thickness ,thickness
 :line-joint-shape :round)
 ,@body))
CLIM 2.2 User Guide 61

4.2.2 Using the :filled option to certain CLIM drawing functions

Certain drawing functions can draw either an area or the outline of that area. This is controlled by the

:filled keyword argument to these functions. If the value is t (the default), then the function paints the

entire area. If the value is nil, then the function strokes the outline of the area under the control of the line-

style drawing option.

The :filled keyword argument is not a drawing option and cannot be supplied to with-drawing-
options.

These are functions that have a :filled keyword argument:

draw-circle

draw-circle*

draw-ellipse

draw-ellipse*

draw-polygon

draw-polygon*

draw-rectangle

draw-rectangle*

draw-rectangles

draw-rectangles*

4.3 CLIM line styles

A line or other path (such as an unfilled ellipse or polygon) is a one-dimensional object. In order to be vis-

ible, the rendering of a line must, however, occupy some non-zero area on the display hardware. A line style
object is used to represent the advice that CLIM supplies to the rendering substrate on how to perform the

rendering. See the section 4.3.2 CLIM line style suboptions for detailed descriptions of the material below.

4.3.1 CLIM line style objects

It is often useful to create a line style object that represents a style you wish to use frequently, rather than

continually supplying the corresponding line style suboptions.

The class of a line style object is line-style. You create a line style object with make-line-
style. Line styles are immutable -- you cannot modify one once it has been created.

make-line-style [Function]

Arguments: &key (unit :normal) (thickness 1) dashes
(joint-shape :miter) (cap-shape :butt)

■ Creates a line style object with the supplied characteristics.

Note that these line style keywords correspond to the CLIM line style suboptions that begin with

:line- (for example, :unit corresponds to the line style suboption :line-unit).

Since make-line-style conses a new object when it is called, you may want to create only

a single instance of a line style and store it somewhere.
62 CLIM 2.2 User Guide

The following readers are provided for the components of line styles (remember line style objects cannot

be modified so there are no setters):

line-style-thickness [Generic function]

Arguments: line-style

■ Returns the thickness component of a line style object, which is an integer.

line-style-joint-shape [Generic function]

Arguments: line-style

■ Returns the joint shape component of a line style object. This will be either :miter, :bevel,

:round, or :none.

line-style-cap-shape [Generic function]

Arguments: line-style

■ Returns the cap shape component of a line style object. This will be either :butt, :square,

:round, or :no-end-point.

line-style-dashes [Generic function]

Arguments: line-style

■ Returns the dashes component of a line style object. This will be nil to indicate a solid line, t to

indicate a dashed line whose dash pattern is unspecified, or will be a sequence specifying some sort

of a dash pattern.

line-style-unit [Generic function]

Arguments: standard-line-style

■ Returns the units in which the line will be drawn, one of :normal or :point.

4.3.2 CLIM line style suboptions

Each line style suboption has a reader function which returns the value of that component from a line style

object.

The line style suboptions are:

:line-unit [Drawing option]

■ The units in which the thickness, dash pattern, and dash phase are measured. Possible values are

:normal and :point, which have the following meanings:

:normal

A relative measure in terms of the usual or normal line thickness. The normal line thickness is the

thickness of the comfortably visible thin line, which is a property of the underlying rendering sub-

strate. This is the default.

:point

An absolute measure in terms of printer's points (approximately 1/72 of an inch).

■ You can call line-style-unit on a line style object to get the value of the :line-unit or

:unit component.
CLIM 2.2 User Guide 63

:line-thickness [Drawing option]

■ The thickness (an integer in the units described by line-style-unit) of the lines or arcs

drawn by a drawing function. The default is 1, which combined with the default unit of :normal,

means that the default line drawn is the comfortably visible thin line.

You can call line-style-thickness on a line style object to get the value of the :line-
thickness, or :thickness component.

:line-dashes [Drawing option]

■ Controls whether lines or arcs are drawn as dashed figures, and if so, what the dashing pattern is.

Possible values are:

nil

Lines are drawn solid, with no dashing. This is the default.

t

Lines are drawn dashed, with a dash pattern that is unspecified and may vary with the rendering

substrate. This allows the underlying display substrate to provide a default dashed line for the user

whose only requirement is to draw a line that is visually distinguished from the default solid line.

Using the default dashed line can be more efficient than specifying customized dashes.

sequence

Specifies a sequence of integers, usually a vector, controlling the dash pattern of a drawing func-

tion. It is an error if the sequence does not contain an even number of elements. The elements of

the sequence are lengths of individual components of the dashed line or arc. The odd elements

specify the length of inked components, the even elements specify the gaps. All lengths are

expressed in the units described by line-style-unit. You can use make-contrasting-
dash-patterns to create a a sequence for the :dashes option.

See the function make-contrasting-dash-patterns.

■ You can call line-style-dashes on a line style object to get the value of the :line-
dashes, or :dashes component.

:line-joint-shape [Drawing option]

■ Specifies the shape of joints between line segments of closed, unfilled figures, when the :line-
thickness or :thickness option to a drawing function is greater than 1. The possible shapes

are :miter, :bevel, :round, and :none; the default is :miter.

Note that the joint shape is implemented by the host window system, so not all platforms will

necessarily support it equally.

■ You can call line-style-joint-shape on a line style object to get the value of the

:line-joint-shape, or :joint-shape component.

:line-cap-shape [Drawing option]

■ Specifies the shape for the ends of lines and arcs drawn by a drawing function, one of :butt,

:square, :round, or :no-end-point. The default is :butt. Note that the cap shape is imple-

mented by the host window system, so not all platforms will necessarily support it equally.

■ You can call line-style-cap-shape on a line style object to get the value of the :line-
cap-shape, or :cap-shape component.

This function can be used to generate a value for the :dashes line suboption.
64 CLIM 2.2 User Guide

make-contrasting-dash-patterns [Function]

Arguments: n &optional k

■ Makes a vector of n dash patterns with recognizably different appearances. If k (an integer

between 0 and n-1) is supplied, make-contrasting-dash-patterns returns the k'th dash

pattern. If n is greater than the value returned by contrasting-dash-patterns-limit
(defined next), make-contrasting-dash-patterns signals an error.

contrasting-dash-patterns-limit [Function]

Arguments: port

■ Returns the number of contrasting dash patterns that the port port can generate. In Allegro

CLIM, the number is currently 16, but this could change.

4.4 Transformations in CLIM

One of the features of CLIM's graphical capabilities is the use of coordinate system transformations. By

using transformations you can often write simpler graphics code, because you can choose a coordinate sys-

tem in which to express the graphics that simplifies the description of the drawing.

A transformation is an object that describes how one coordinate system is related to another. A graphic

function performs its drawing in the current coordinate system of the stream. A new coordinate system is

defined by describing its relationship to the old one (the transformation). The drawing can now take place

in the new coordinate system. The basic concept of graphic transformations is illustrated in Figure 4.1.

Figure 4.1. Graphic Transformation

For example, you might define the coordinates of a five-pointed star, and a function to draw it.

(defvar *star* '(0 3 2 -3 -3 1/2 3 1/2 -2 -3))
(defun draw-star (stream)
(clim:draw-polygon* stream *star* :closed t :filled nil))
CLIM 2.2 User Guide 65

Without any transformation, the function draws a small star centered around the origin. By applying a

transformation, the same function can be used to draw a star of any size, anywhere. For example, the fol-

lowing code will draw a picture somewhat like the lower half of Figure 4.1 on stream.:

(clim:with-room-for-graphics (stream)
 (clim:with-translation (stream 100 100)
 (clim:with-scaling (stream 10)
 (draw-star stream)))
 (clim:with-translation (stream 240 110)
 (clim:with-rotation (stream -0.5)
 (clim:with-scaling (stream 12 8)
 (draw-star stream)))))

4.4.1 The transformations used by CLIM

The type of transformations that CLIM uses are called affine transformations. An affine transformation is

a transformation that preserves straight lines. In other words, if you take a number of points that fall on a

straight line and apply an affine transformation to their coordinates, the transformed coordinates will fall

on a straight line in the new coordinate system. Affine transformations include translations, scalings, rota-

tions, and reflections.

• A translation is a transformation that preserves length, angle, and orientation of all geometric

entities.

• A rotation is a transformation that preserves length and angles of all geometric entities. Rotations

also preserve one point and the distance of all entities from that point. You can think of that point

as the center of rotation, it is the point around which everything rotates.

• There is no single definition of a scaling transformation. Transformations that preserve all angles

and multiply all lengths by the same factor (preserving the shape of all entities) are certainly

scaling transformations. However, scaling is also used to refer to transformations that scale

distances in the x direction by one amount and distances in the y direction by another amount.

• A reflection is a transformation that preserves lengths and magnitudes of angles, but changes the

sign (or handedness) of angles. If you think of the drawing plane on a transparent sheet of paper,

a reflection is a transformation that turns the paper over.

If we transform from one coordinate system to another, then from the second to a third coordinate system,

we can regard the resulting transformation as a single transformation resulting from composing the two

component transformations. It is an important and useful property of affine transformations that they are

closed under composition.

Note that composition is not commutative; in general, the result of applying transformation A and then

applying transformation B is not the same as applying B first, then A.

Any arbitrary transformation can be built up by composing a number of simpler transformations, but that

same transformation can often be constructed by a different composition of different transformations.

Transforming a region applies a coordinate transformation to that region, thus moving its position on the

drawing plane, rotating it, or scaling it. Note that this creates a new region, it does not side-effect the

region argument.

The user interface to transformations is the :transformation option to the drawing functions. Users

can create transformations with constructors; see the section 4.4.2 CLIM transformation constructors.

The other operators documented in this section are used by CLIM itself, and are not often needed by users.
66 CLIM 2.2 User Guide

4.4.2 CLIM transformation constructors

The following functions can be used to create a transformation object that can be used, for instance, in a call

to compose-transformations.

make-translation-transformation [Function]

Arguments: delta-x delta-y

■ Makes a transformation that translates all points by delta-x in the x-direction and delta-y
in the y-direction.

make-rotation-transformation [Function]

Arguments: angle &optional origin

■ Makes a transformation that rotates all points by angle around the point origin. The angle is

specified in radians. If origin is supplied it must be a point; if not supplied it defaults to (0,0).

make-rotation-transformation* [Function]

Arguments: angle origin-x origin-y

■ Makes a transformation that rotates all points by angle around the point, (origin-x, origin-

y). The angle is specified in radians.

■ The following transformation rotates the coordinate system around the point (10,10):

(make-rotation-transformation* (/ pi 8) 10 10)

make-scaling-transformation [Function]

Arguments: mx my &optional origin

■ Makes a transformation that multiplies the x-coordinate distance of every point from origin by

mx and the y-coordinate distance of every point from origin by my. If origin is supplied it must

be a point; if not supplied it defaults to (0,0).

make-scaling-transformation* [Function]

Arguments: mx my origin-x origin-y

■ Makes a transformation that multiplies the x-coordinate distance of every point from origin-x
by mx and the y-coordinate distance of every point from origin-y by my.

■ For example, using the following transformation on a stream would cause all output on that stream

to be only half as big:

(make-scaling-transformation* 1/2 1/2)

make-reflection-transformation [Function]

Arguments: point-1 point-2

■ Makes a transformation that reflects every point through the line passing through the points

point-1 and point-2.

make-reflection-transformation* [Function]

Arguments: x1 y1 x2 y2

■ Makes a transformation that reflects every point through the line passing through the points (x1,

y1) and (x2, y2).
CLIM 2.2 User Guide 67

make-transformation [Function]

Arguments: mxx mxy myx myy tx ty

■ Makes a general transformation whose effect is,

x’ = mxxx+mxyy+tx

y’ = myxx+myyy+ty

where x and y are the coordinates of a point before the transformation and x' and y' are the coordi-

nates of the corresponding point after.

make-3-point-transformation [Function]

Arguments: point-1 point-2 point 3point-1-image point-2-image
point-3-image

■ Makes a transformation that takes point-1 into point-1-image, point-2 into point-
2-image and point-3 into point-3-image. (Three non-collinear points and their images

under the transformation are enough to specify any affine transformation.)

■ It is an error for point-1, point-2, and point-3 to be collinear; if they are collinear, the

transformation-underspecified condition is signaled. If point-1-image, point-
2-image, and point-3-image are collinear, the resulting transformation will be singular but

this is not an error.

make-3-point-transformation* [Function]

Arguments: x1 y1 x2 y2 x3 y3 x1-image y1-image x2-image y2-image
x3-image y3-image

■ Makes a transformation that takes (x1, y1) into (x1-image, y1-image), (x2, y2) into (x2-
image, y2-image) and (x3, y3) into (x3-image, y3-image). (Three non-collinear points and

their images under the transformation are enough to specify any affine transformation.)

■ It is an error for (x1, y1), (x2, y2) and (x3, y3) to be collinear; if they are collinear, the trans-
formation-underspecified condition is signaled. If (x1-image, y1-image), (x2-
image, y2-image), and (x3-image, y3-image) are collinear, the resulting transformation will

be singular but this is not an error.

4.4.3 Operations on CLIM transformations

This section describes the various operations you can perform on CLIM transformations. Most of the oper-

ations are predicates that you can use to figure out what properties a transformation has.

transformation [Class]

■ The protocol class for all transformations. There are one or more subclasses of

transformation with implementation-dependent names that implement transformations. If you

want to create a new class that obeys the transformation protocol, it must be a subclass of

transformation.

+identity-transformation+ [Constant]

■ An instance of a transformation that is guaranteed to be an identity transformation, that is, the

transformation that does nothing.

The following predicates are provided in order to be able to determine whether or not a transformation

has a particular characteristic.
68 CLIM 2.2 User Guide

transformation-equal [Generic function]

Arguments: transform1 transform2

■ Returns t if the two transformations have equivalent effects (that is, are mathematically equal),

otherwise returns nil.

identity-transformation-p [Generic function]

Arguments: transform

■ Returns t if transform is equal (in the sense of transformation-equal) to the identity

transformation, otherwise returns nil.

translation-transformation-p [Generic function]

Arguments: transform

■ Returns t if transform is a pure translation, that is a transformation that moves every point by

the same distance in x and the same distance in y, otherwise returns nil.

invertible-transformation-p [Generic function]

Arguments: transform

■ Returns t if transform has an inverse, otherwise returns nil.

reflection-transformation-p [Generic function]

Arguments: transform

■ Returns t if transform inverts the handedness of the coordinate system, otherwise returns

nil. Note that this is a very inclusive category. Transformations are considered reflections even if

they distort, scale, or skew the coordinate system, as long as they invert the handedness.

rigid-transformation-p [Generic function]

Arguments: transform

■ Returns t if transform transforms the coordinate system as a rigid object, that is, as a combi-

nation of translations, rotations, and pure reflections. Otherwise, it returns nil.

Rigid transformations are the most general category of transformations that preserve magnitudes

of all lengths and angles.

even-scaling-transformation-p [Generic function]

Arguments: transform

■ Returns t if transform multiplies all x-lengths and y-lengths by the same magnitude, other-

wise returns nil. This includes pure reflections through vertical and horizontal lines.

scaling-transformation-p [Generic function]

Arguments: transform

■ Returns t if transform multiplies all x-lengths by one magnitude and all y-lengths by another

magnitude, otherwise returns nil. This category includes even scalings as a subset.

rectilinear-transformation-p [Generic function]

Arguments: transform

■ Returns t if transform will always transform any axis-aligned rectangle into another axis-

aligned rectangle, otherwise returns nil. This category includes scalings as a subset, and also

includes 90 degree rotations.
CLIM 2.2 User Guide 69

Rectilinear transformations are the most general category of transformations for which the

bounding rectangle of a transformed object can be found by transforming the bounding rectangle of

the original object.

4.4.4 Composition of CLIM transformations

Composing one transformation with another is the way to create a new transformation that has the same

effect as applying both of the others.

The most general function is compose-transformations, but the following six functions are spe-

cial-cases of compose-transformations that are more efficient:

compose-translation-with-transformation

compose-rotation-with-transformation

compose-scaling-with-transformation

compose-transformation-with-translation

compose-transformation-with-rotation

compose-transformation-with-scaling

compose-transformations [Generic function]

Arguments: transform1 transform2

■ Returns a transformation that is the composition of its arguments. Composition is in right-to-left

order, that is, the resulting transformation represents the effects of applying transform2 followed

by transform1. This is consistent with the order in which with-translation, with-
rotation, and with-scaling compose.

For example, the following two forms result in the same transformation, presuming that the

stream's transformation is the identity transformation:

(clim:compose-transformations

 (clim:make-translation-transformation dx dy)

 (clim:make-rotation-transformation angle))

(clim:with-translation (stream dx dy)

 (clim:with-rotation (stream angle)

 (clim:medium-transformation stream)))

■ Note that any arbitrary transformation can be built up by composing a number of simpler trans-

formations, but that composition is not unique.

compose-translation-with-transformation [Generic function]

Arguments: transform dx dy

■ Creates a new transformation by composing transform with a given translation, as specified

by dx and dy. The order of composition is that the translation transformation is first, followed by

transform.

■ This function be been implemented as follows:

(defun compose-translation-with-transformation (transform dx dy)

 (clim:compose-transformations

 transform
70 CLIM 2.2 User Guide

 (clim:make-translation-transformation dx dy)))

compose-scaling-with-transformation [Generic function]

Arguments: transform mx my &optional origin

■ Creates a new transformation by composing transform with a given scaling, as specified by

mx, my, and origin. If origin is supplied it must be a point; if not supplied it defaults to (0,0).

The order of composition is that the scaling transformation is first, followed by transform.

■ This function could be implemented as follows:

(defun compose-scaling-with-transformation

 (transform mx my &optional origin)

 (clim:compose-transformations

 transform

 (clim:make-scaling-transformation mx my origin)))

compose-rotation-with-transformation [Generic function]

Arguments: transform angle &optional origin

■ Creates a new transformation by composing transform with a given rotation, as specified by

angle and origin. angle is in radians. If origin is supplied it must be a point; if not supplied

it defaults to (0,0). The order of composition is that the rotation transformation is first, followed by

transform.

■ This function could be implemented as follows:

(defun compose-rotation-with-transformation

 (transform angle &optional origin)

 (clim:compose-transformations

 transform

 (clim:make-rotation-transformation angle origin)))

compose-transformation-with-translation [Generic function]

Arguments: transform dx dy

■ Creates a new transformation by composing the given translation, with the transformation.

The order of composition is transformation is first, followed by the translation transformation.

dx and dy are as for make-translation-transformation.

compose-transformation-with-scaling [Generic function]

Arguments: transform mx my &optional origin

■ Creates a new transformation by composing the given scaling, with the transformation. The

order of composition is transformation is first, followed by the scaling transformation. mx, my,

and origin are as for make-scaling-transformation.

compose-transformation-with-rotation [Generic function]

Arguments: transform angle &optional origin

■ Creates a new transformation by composing the given rotation, with the transformation. The

order of composition is transformation is first, followed by the rotation transformation.

angle and origin are as for make-rotation-transformation.
CLIM 2.2 User Guide 71

invert-transformation [Generic function]

Arguments: transform

■ Returns a transformation that is the inverse of transform. The result of composing a transfor-

mation with its inverse is the identity transformation.

■ If transform is singular, invert-transformation signals the singular-
transformation condition, with a named restart that is invoked with a transformation and makes

invert-transformation return that transformation. This is to allow a drawing application, for

example, to use a generalized inverse to transform a region through a singular transformation.

■ Note that finite-precision arithmetic there are several low-level conditions which might occur dur-

ing the attempt to invert a singular or almost singular transformation. (These include computation of

a zero determinant, floating-point underflow during computation of the determinant, or floating-point

overflow during subsequent multiplication.) invert-transformation must signal the sin-
gular-transformation condition for all of these cases.

Any arbitrary transformation can be built up by composing a number of simpler transformations, but that

composition is not unique.

The following three forms can be used to compose a transformation into the current transformation of a

stream. They are intended as abbreviations for calling compose-transformations and with-
drawing-options directly.

with-rotation [Macro]

Arguments: (medium angle &optional origin) &body body

■ Establishes a rotation on medium that rotates by angle (in radians), and then executes body
with that transformation in effect. If origin is supplied, the rotation is about that point. The default

for origin is (0,0).

■ This is equivalent to using with-drawing-options with the :transformation key-

word argument supplied:

(clim:with-drawing-options

(medium

 :transformation (clim:make-rotation-transformation

angle origin))

body)

with-translation [Macro]

Arguments: (medium dx dy) &body body

■ Establishes a scaling transformation on medium that scales by dx in the x direction and dy in

the y direction, and then executes body with that transformation in effect.

■ This is equivalent to using with-drawing-options with the :transformation key-

word argument supplied:

(clim:with-drawing-options

(medium

 :transformation (clim:make-trnslation-transformation

dx dy))

body)
72 CLIM 2.2 User Guide

with-scaling [Macro]

Arguments: (medium sx &optional sy) &body body

■ Establishes a scaling transformation on medium that scales by sx in the x direction and sy in the

y direction, and then executes body with that transformation in effect. If sy is not supplied, it

defaults to sx.

■ This is equivalent to using with-drawing-options with the :transformation key-

word argument supplied:

(clim:with-drawing-options

(medium

 :transformation (clim:make-scaling-transformation

sx sy))

body)

The following three macros also compose a transformation into the current transformation of a stream,

but have more complex behavior.

with-room-for-graphics [Macro]

Arguments: (&optional stream &key height (first-quadrant t)
(move-cursor t) record-type) &body body

■ Binds the dynamic environment to establish a local Cartesian coordinate system for doing graph-

ics output onto stream. If first-quadrant is t (the default), a local Cartesian coordinate system is estab-

lished with the origin (0,0) of the local coordinate system placed at the current cursor position; (0,0)

is in the lower left corner of the area created. If the boolean move-cursor is t (the default), then

after the graphic output is completed, the cursor is positioned past (immediately below) this origin.

The bottom of the vertical block allocated is at this location (that is, just below point (0,0), not nec-

essarily at the bottom of the output done).

If height is supplied, it should be a number that specifies the amount of vertical space to allo-

cate for the output, in device units. If it is not supplied, the height is computed from the output.

record-type specifies the class of output record to create to hold the graphical output. The

default is standard-sequence-output-record.

■ The following rather complicated example draws the points of a compass in a menu, and allow the

user to choose one of the compass points. with-room-for-graphics is used to put the entire

menu in a coordinate space whose upper-left corner is (0,0). because it depends on the correct context

being present, this function must be run in a CLIM Lisp Listener (such as displayed by the Lisp Lis-

tener demo). Calling this function from Lisp top-level in, say, an Emacs *common-lisp* buffer

signals an error because the correct context is not present.

(defun choose-compass-point (stream)
 (labels ((draw-compass-point (stream type symbol x y)
 (clim:with-output-as-presentation (stream symbol type)
 (clim:draw-text* stream (symbol-name symbol) x y
 :align-x :center :align-y :center
 :text-style ’(:sans-serif :roman :large))))
 (draw-compass (stream type)
 (clim:with-room-for-graphics (stream :first-quadrant nil)
 (clim:draw-line* stream 0 25 0 -25 :line-thickness 2)
 (clim:draw-line* stream 25 0 -25 0 :line-thickness 2)
 (dolist (point ’((n 0 -30) (s 0 30) (e 30 0) (w -30 0)))
 (apply #’draw-compass-point stream type point)))))
CLIM 2.2 User Guide 73

 (clim:with-menu (menu stream :scroll-bars nil)
 (clim:menu-choose-from-drawer menu ’clim:menu-item #’draw-compass))))

with-local-coordinates [Macro]

Arguments: (&optional stream x y) &body body

■ Binds the dynamic environment to establish a local coordinate system with the positive X-axis

extending to the right and the positive Y-axis extending downward, with (0,0) at (x,y). If x and y are

not specified (or even if x is and y is not), the current cursor position of stream is used as (0,0).

with-first-quadrant-coordinates [Macro]

Arguments: (&optional stream x y) &body body

■ Binds the dynamic environment to establish a local coordinate system with the positive X-axis

extending to the right and the positive Y-axis extending upward, with (0,0) at (x,y). If x and y are

not specified (or even if x is and y is not), the current cursor position of stream is used as (0,0).

Here is an example using with-local-coordinates and with-first-quadrant-coordinates. We take *test-
pane* and set the cursor position to (100, 50):

(stream-set-cursor-position *test-pane* 100 50)

Then we draw and arrow to the point (50,50) using with-local-coordinates without specifying x and y.

(with-local-coordinates (*test-pane*) (draw-arrow* *test-pane* 0 0 50 50)

Next we use both macros to draw arrows from the (local) origin to (50,50). Note that the arrow points

down to the right (to the southeast) when drawn within the body of with-local-coordinates and

up to the right (to the northeast) when drawn within the body of with-first-quadrant-
coordinates. Note further that the cursor location is not modified by these macros.

(with-local-coordinates (*test-pane* 200 200) (draw-arrow* 0 0 50 50))
(with-first-quadrant-oordinaes (*test-pane 200 200) (draw-arrow* 0 0 50 50))

This arrow is drawn
within the body of
with-local-coordi-
nates. Note that is
points southeast,
since the Y axis
points down. The
small vertical line at
the base of the
arrow is the stream
cursor. Its position is
used when x and y
and not specified.

This arrow is drawn within
the body of with-first-
quadrant-coordinates

This arrow is drawn within
the body of with-local-
coordinates
74 CLIM 2.2 User Guide

4.4.5 Applying CLIM transformations

The following functions can be used to apply a transformation to some sort of a geometric object, such as a

region or a distance. Calling transform-position or untransform-position on a spread point

is generally more efficient than calling transform-region or untransform-region on the

unspread point object.

transform-region [Generic function]

Arguments: transformation region

■ Applies transformation to region, and returns a new transformed region.

Transforming a region applies a coordinate transformation to that region, thus moving its position

on the drawing plane, rotating it, or scaling it. Note that this creates a new region, it does not side-

effect the region argument.

untransform-region [Generic function]

Arguments: transformation region

■ Applies the inverse of transformation to region and returns a new transformed region.

This is equivalent to:

(clim:transform-region

 (clim:invert-transformation transform) region)

transform-position [Generic function]

Arguments: transform x y

■ Applies transform to the point whose coordinates are x and y, and returns two values, the

transformed x-coordinate and the transformed y-coordinate.

transform-position is the spread version of transform-region in the case where the

region is a point.

untransform-position [Generic function]

Arguments: transform x y

■ Applies the inverse of transform to the point whose coordinates are x and y, and returns two

values, the transformed x-coordinate and the transformed y-coordinate.

transform-position is the spread version of transform-region in the case where the

region is a point.

transform-distance [Generic function]

Arguments: transform dx dy

■ Applies transform to the distance represented by dx and dy, and returns two values, the trans-

formed dx and the transformed dy. A distance represents the difference between two points. It does

not transform like a point.

untransform-distance [Generic function]

Arguments: transform dx dy

■ Applies the inverse of transform to the distance represented by dx and dy, and returns two

values, the transformed dx and the transformed dy. A distance represents the difference between two

points. It does not transform like a point.
CLIM 2.2 User Guide 75

transform-rectangle* [Generic function]

Arguments: transform x1 y1 x2 y2

■ Applies the transformation transform to the rectangle specified by the four coordinate argu-

ments, which are real numbers. The arguments x1, y1, x2, and y1 are canonicalized in the same

way as for make-bounding-rectangle. Returns four values that specify the minimum and

maximum points of the transformed rectangle in the order min-x, min-y, max-x, and max-y.

■ It is an error is transform does not satisfy rectilinear-transformation-p.

■ transform-rectangle* is the spread version of transform-region in the case where

the transformation is rectilinear and the region is a rectangle.

untransform-rectangle* [Generic function]

Arguments: transform x1 y1 x2 y2

■ This is exactly equivalent to calling transform-rectangle* on the inverse of

transform.
76 CLIM 2.2 User Guide

Chapter 5 Text styles in CLIM

5.1 Concepts of CLIM text styles

CLIM's model for the appearance of text follows the same principle as the model for creating formatted out-

put. This principle holds that the application program should describe how the text should appear in high-

level terms, and that CLIM will take care of the details of choosing a specific device font. This approach

emphasizes portability.

You specify the appearance of text by giving it an abstract text style. Each CLIM medium defines a map-

ping between these abstract style specifications and particular device-specific fonts. At runtime, CLIM

chooses an appropriate device font to represent the characters.

A text style is a combination of three characteristics that describe how characters appear. Text style objects

have components for family, face, and size.

family
Characters of the same family have a typographic integrity, so that all characters of the same fam-

ily resemble one another. CLIM supports the families :fix, :serif, :sans-serif, or nil.

face
A modification of the family, such as bold or italic. CLIM supports the faces :roman (meaning

normal), :bold, :italic, (:bold :italic), or nil.

size
The size of the character. One of the logical sizes (:tiny, :very-small, :small, :normal,

:large, :very-large, :huge, :smaller, :larger), or a real number representing the

size in printer's points, or nil.

Not all of these attributes need be supplied for a given text style object. Text styles can be merged in much

the same way as pathnames are merged; unspecified components in the style object (that is, components

which have nil in them) may be filled in by the components of a default style object.

A text style object is called fully specified if none of its components is nil, and the size component is

not a relative size (that is, is neither :smaller nor :larger).

default-text-style [Variable]

■ This is the default text style used by all streams. When doing output to a stream, if the text style

is not fully specified, it is merged against *default-text-style* using merge-text-
styles.

If you change the value of *default-text-style*, the new value must be a fully specified

text style.

Note that the sizes :smaller and :larger are treated specially in that they are merged with

the default text style size to result in a size that is discernibly smaller or larger. For example, a text

style size of :larger would merge with a default text size of :small to produce the resulting size

:normal.
CLIM 2.2 User Guide 77

When text is rendered on a medium, the text style is mapped to some medium specific description of the

glyphs for each character. This description is usually that medium's concept of a font object. This mapping

is mostly transparent to the application developer, but it is worth noting that not all text styles have map-

pings associated with them on all mediums. If the text style used does not have a mapping associated with

it on the given medium, a special text style reserved for this case will be used.

5.2 CLIM Text Style Objects

It is often useful to create a text style object that represents a style you wish to use frequently, rather than

continually specifying the corresponding text style suboptions.

For example, you might want to have a completely different family, face and size for menus. You could

make a text style object and make it be the value of *menu-text-style*.

You create text style objects using make-text-style.

(clim:with-text-style
 (my-stream (clim:make-text-style :fix :bold :large))
 (write-string "Here is a text-style example." my-stream))

Note that text style objects are interned. That is, two different invocations of make-text-style with

the same combination of family, face and size will result in the same (in the sense of eq) text style object.

For this reason, you must not modify text style objects.

5.3 CLIM Text Style Suboptions

You can use text style suboptions to specify characteristics of a text style object. Each text style suboption

has a reader function which returns the current value of that component from a text style object.

The text style suboptions are:

:text-family [Text style option]

■ Specifies the family of the text style. The reader function is text-style-family.

:text-face [Text style option]

■ Specifies the face of the text style. The reader function is text-style-face.

:text-size [Text style option]

■ Specifies the size of the text style. The reader function is text-style-size.

5.4 CLIM Text Style Functions

The following functions can be used to parse, merge, and create text style objects, and read the components

of the objects.
78 CLIM 2.2 User Guide

parse-text-style [Generic function]

Arguments: text-style

■ text-style is either a text style object or a device font, in which case parse-text-style
returns text-style. Otherwise, text-stylemust be a list of three elements, the text style fam-

ily, face, and size. In this case, text-style is parsed and a text style object is returned.

For example, (clim:parse-text-style '(:fix :bold 12)) might return the object

#<STANDARD-TEXT-STYLE :FIX.:BOLD.12 1116707341>

merge-text-styles [Generic function]

Arguments: style1 style2

■ Merges style1 against the defaults provided by style2. That is, any nil components in

style1 are filled in from style2.

If the size component of style1 is a relative size, the resulting size will be the size component

of style2 as modified by the relative size.

If the face component of style1 is :bold and the face component of style2 is :italic
(or vice-versa), the resulting face will be (:bold :italic).

Here are some examples:

(clim:merge-text-styles '(:fix :bold 12) '(nil :roman nil))
 → #<STANDARD-TEXT-STYLE :FIX.:BOLD.12 @ #xfac762>
(clim:merge-text-styles '(:fix :bold nil) '(nil :roman 10))
 → #<STANDARD-TEXT-STYLE :FIX.:BOLD.10 @ #xabe634>
(clim:merge-text-styles '(:fix :bold 12) '(nil :italic 10))
 → #<STANDARD-TEXT-STYLE :FIX.(:BOLD :ITALIC).12 @ #xf23be6>

text-style-components [Generic function]

Arguments: text-style medium

■ Returns the components of text-style as three values (family, face, and size).

text-style-family [Generic function]

Arguments: text-style

■ Returns the family component of the text-style.

text-style-face [Generic function]

Arguments: text-style

■ Returns the face component of the text-style.

text-style-size [Generic function]

Arguments: text-style

■ Returns the size component of the text-style.

text-style-ascent [Generic function]

Arguments: text-style medium

■ The ascent (an integer) of text-style as it would be rendered on medium.
CLIM 2.2 User Guide 79

The ascent of a text style is the ascent of the medium's font corresponding to text-style. The

ascent of a font is the distance between the top of the tallest character in that font and the baseline.

text-style-descent [Generic function]

Arguments: text-style medium

■ The descent (an integer) of text-style as it would be rendered on medium.

The descent of a text style is the descent of the medium's font corresponding to text-style. The

descent of a font is the distance between the baseline and the bottom of the lowest descending char-

acter (usually "y", "q", "p", or "g").

text-style-height [Generic function]

Arguments: text-style medium

■ Returns the height (an integer) of the usual character in text-style on medium. The height

of a text style is the sum of its ascent and descent.

text-style-width [Generic function]

Arguments: text-style medium

■ Returns the width (an integer) of the usual character in text-style on medium.

text-style-fixed-width-p [Generic function]

Arguments: text-style medium

■ Returns t if text-style will map to a fixed-width font on medium, otherwise returns nil.

text-style-mapping [Generic function]

Arguments: port style &optional character-set

■ Returns the font object that will be used if characters in character-set in the text style

style are drawn on any medium on the port port. character-set defaults to the standard

character set. Under Allegro CLIM, the object returned by text-style-mapping will be an X

Windows font object.

■ If the port is using exact text style mapping, CLIM will choose a font whose size exactly matches

the size specified in the text style. Otherwise if the port is using loose text style mappings, CLIM will

choose the font whose size is closest to the desired size.

(setf text-style-mapping) [Generic function]

Arguments: mapping port text-style &optional character-set

■ Sets the text style mapping for port, character-set, and text-style to mapping.

port, character-set, and text-style are as for text-style-mapping. mapping is

either a font name or a list of the form (:style family face size); in the latter case, the given

style is translated at runtime into the font represented by the specified style. character-set
defaults to the standard character set.

make-text-style [Function]

Arguments: family face size

■ Creates a text style object with the supplied characteristics. Generally, there is no need to call

make-text-style; you should use parse-text-style or merge-text-styles
instead.

■ The arguments can have the following values:
80 CLIM 2.2 User Guide

family

One of :fix, :serif, :sans-serif, or nil.

face

One of :roman, :bold, :italic, (:bold :italic), or nil.

size

One of the logical sizes (:tiny, :very-small, :small, :normal, :large, :very-
large, :huge, :smaller, :larger), or a real number representing the size in printer's

points, or nil.

The following macros can be used to change the current text style for a stream by merging the specified

style with the stream's current text style. They are intended as abbreviations for calling with-drawing-
options directly.

with-text-style [Macro]

Arguments: (medium style) &body body

■ Binds the current text style of medium to correspond to the new text style, within the body.

style is either a text style specifier or a text style object. The default for medium is *standard-
output*.

■ This is the same as:

(clim:with-drawing-options (medium :text-style style) body)

■ Note that with-text-style affects medium-text-style.

with-text-face [Macro]

Arguments: (medium face) &body body

■ Binds the current text face of medium to correspond to the new text face, within the body.

face is one of :roman, :bold, :italic, (:bold :italic), or nil. The default for

medium is *standard-output*.

■ This is the same as:

(clim:with-drawing-options (medium :text-face face) body)

■ Note that with-text-face affects medium-text-style.

with-text-family [Macro]

Arguments: (medium family) &body body

■ Binds the current text family of medium to correspond to the new text family, within the body.

family is one of :fix, :serif, :sans-serif, or nil. The default for medium is *standard-
output*.

■ This is the same as:

(clim:with-drawing-options (medium :text-family family) body)

■ Note that with-text-family affects medium-text-style.
CLIM 2.2 User Guide 81

with-text-size [Macro]

Arguments: (medium size) &body body

■ Binds the current text size of medium to correspond to the new text size, within the body.

size is one of the logical sizes (:normal, :small, :large, :very-small, :very-large,

:smaller, :larger), or a real number representing the size in printer's points, or nil. The

default for medium is *standard-output*.

■ This is the same as:

(clim:with-drawing-options (medium :text-size size) body)

■ Note that with-text-size affects medium-text-style.
82 CLIM 2.2 User Guide

Chapter 6 Drawing in color in CLIM

6.1 Concepts of drawing in color in CLIM

To draw in color, you supply the :ink drawing option to CLIM's drawing functions when using streams

opened under a color console.

Abstractly, the drawing functions work by selecting a region of the drawing plane and painting it with

color. At the display device level, there are usually functions that draw a particular shape with the specified

color.

The region to be painted is the intersection of the shape specified by the drawing function and the

:clipping-region drawing option, which is then transformed by the :transformation drawing

option. The shape can be a graphical area (such as a rectangle or an ellipse), a path (such as a line segment

or the outline of an ellipse), or the letterforms of text.

Use the :ink drawing option to specify how to color this region of the can be a drawing plane. The value

for :ink is often a color, but you can also specify a more general design for :ink. When you use a design

for :ink, you can control the coloring-in process by specifying a new color of the drawing plane for each

ideal point in the shape being drawn. (Note that this can depend on the coordinates of the point, and on the

current color at that point in the drawing plane). For more information, see chapter 7 Drawing with Designs
in CLIM.

Along with its drawing plane, a medium has a foreground and a background. The foreground is the default

ink when the :ink drawing option is not specified. The background is drawn all over the drawing plane

before any output is drawn. You can erase by drawing the background over the region to be erased. You can

change the foreground or background at any time.

When you change the background, the contents of the drawing plane is redrawn. The effect is as if every-

thing on the drawing plane is erased, the background is drawn on the entire drawing plane, and then every-

thing that was ever drawn (provided it was saved in the output history) is redrawn using the new background.

6.1.1 CLIM color objects

A color in CLIM is an object representing the intuitive definition of color: white, black, red, pale yellow,

and so forth. The visual appearance of a single point is completely described by its color.

A color can be specified by three real numbers between 0 and 1 inclusive, giving the amounts of red,

green, and blue. Three 0's mean black; three 1's mean white. A color can also be specified by three numbers

giving the intensity, hue, and saturation. A totally unsaturated color (a shade of gray) can be specified by a

single real number between 0 and 1, giving the amount of white.

You can obtain a color object by calling one of make-rgb-color, make-ihs-color, make-
gray-color, or find-named-color or by using one of the predefined colors listed in Predefined

Color Names in CLIM. Specifying a color object as the :ink drawing option, the foreground, or the back-

ground causes CLIM to use that color in the appropriate drawing operations.
CLIM 2.2 User Guide 83

Rendering of colors
When CLIM renders the graphics and text in the drawing plane onto a real display device, physical limita-

tions of the display device force the visual appearance to be an approximation of the drawing plane. Colors

that the hardware doesn't support might be approximated by using a different color, or by using a stipple

pattern. Even primary colors such as red and green can't be guaranteed to have distinct visual appearance

on all devices, so if device independence is desired it is best to use make-contrasting-inks rather

than a fixed palette of colors.

The region of the display device that gets colored when rendering a path or text is controlled by the line-

style or text-style, respectively.

Palettes
All drawing is done via a palette. A palette is an opaque data structure that contains mappings of CLIM

colors to port specific pixel values. A palette is associated with a port and can only be used when drawing

on that port. It is not necessary to specify a palette when drawing as each sheet has an associated palette

which is automatically used when drawing on that sheet. Each port has a default palette and by default when

a sheet is grafted it takes the default palette of the port of the root window onto which the sheet is grafted.

Application frames can have their own separate palettes. This is useful if a particular frame needs a large

number of color resources as it does not need to share palettes with other applications on the screen.

Depending on the hardware of the host windowing system, this palette will be installed all the time for the

frames top level window or only when for example the pointer is in that window. An application frame (and

all of its panes) is associated with a palette when the frame is realized by the frame manager. Frame mangers

are created by default with the default palette of their port but can be created with a new palette in order to

provide this palette for any frames managed by that manager.

In addition to providing internal mappings of CLIM colors, a palette can also be queried to determine the

visual type of the port. In particular it can be used to determine whether a port is monochrome or color and

whether or not the display hardware supports writable color maps.

palette [Class]

■ The palette class is the protocol class for a palette. If you want to create a new class that

behaves like a palette it should be a subclass of palette. Subclasses of palette must obey the

palette protocol.

palettep [Function]

Arguments: object

■ Returns true if object is a palette, otherwise returns false.

The following two functions comprise the color protocol. Both of them return properties of the palette.

palette-color-p [Generic function]

Arguments: palette

■ Returns true if palette is associated with a port which supports color, or false if the port only

supports monochrome.

palette-mutable-p [Generic function]

Arguments: palette

■ Returns true if palette is associated with a port which supports dynamic colors (i.e. has a writ-

able hardware color map), otherwise returns false.
84 CLIM 2.2 User Guide

make-palette [Generic function]

Arguments: port

■ Return a member of the class palette. The port argument specifies which port the palette is

associated with.

frame-palette [Generic function]

Arguments: frame

■ Returns the palette currently being used by frame. For managed frames the following forms eval-

uate to the same thing:

(frame-palette frame)

(frame-manager-palette (frame-manager frame))

For unmanaged frames, frame-palette returns the default palette for the port associated with the

frame.

■ Note. Earlier documentation stated that you could use setf on this to change the frame's palette.

This is not correct. If you wish to change the palette associated with the frame you should instead

change the palette associated with frame's frame-manager.

frame-manager-palette [Generic function]

Arguments: frame-manager

■ Returns the palette that will be used by all the frames managed by frame-manager. You can

use setf on this to change the frame-manager's palette. This will change the palette used by all

frames adopted by the frame-manager and will force them to be repainted using the new palette.

■ Note. The CLIM 2.0 User Guide description of function is incorrect. Also in CLIM 2.0 setf'ing

frame-manager-palette did not work correctly.

palette-full [Condition]

■ The condition signaled when an attempt is made to allocate a color in a palette which is full.

palette-full-palette [Generic function]

Arguments: palette-full-condition

■ Returns the palette associated with palette-full-condition.

palette-full-color [Generic function]

Arguments: palette-full-condition

■ Returns the color associated with palette-full-condition.

use-closest-color [Variable]

■ When non-nil, the closest available color will be used if the palette fills up and the use-
other-color restart is found. When the value is :warn a warning is also given stating the desired

color and the actual color used.

When nil the palette-full condition is always signaled if the palette fills up.

The default value is :warn.
CLIM 2.2 User Guide 85

find-closest-matching-color [Generic function]

Arguments: palette desired-color

■ Returns the closest matching color to desired-color available in palette and the distance

between the returned color and the desired color. The distance is defined as the sum of the squares

of the differences between the rgb values of the two colors. The function will return nil if palette
is empty.

use-other-color [Named restart]

Arguments: other-color

■ When invoked this restart causes other-color to be used when a palette-full condition

is signaled. This restart is not always available when the palette-full condition is signaled; it

is unavailable, for example, when allocating a dynamic or layered color or if add-colors-to-
palette fills the palette.

cadd-colors-to-palette [Generic function]

Arguments: palette &rest colors

■ This function allocates all of colors into palette. If the palette fills up during allocation of

any of the colors, no colors are added to the palette and the palette-full condition is signaled.

This function can be used to determine in advance of running an application if there is enough

room in the default palette allowing the application to create its own palette if there is not.

remove-colors-from-palette [Generic function]

Arguments: palette &rest colors

■ This function de-allocates all of colors from palette. It is an error to remove colors which are cur-

rently in use by a frame using the palette.

port-default-palette [Generic function]

Arguments: port

■ The default palette for the port. CLIM arranges to set this up based on the type of display server

the port is connected to. The palette for a monochrome display will differ from the palette for a gray-

scale display, which will differ from the palette for a full color display.

6.2 CLIM Operators for Drawing in Color

make-ihs-color [Function]

Arguments: intensity hue saturation

■ Creates a color object. intensity is a real number between 0 and the square root of 3 inclusive.

hue and saturation are real numbers between 0 and 1 inclusive.

make-rgb-color [Function]

Arguments: red green blue

■ Creates a color object. red, green, and blue are real numbers between 0 and 1 inclusive that

specify the values of the corresponding color components.
86 CLIM 2.2 User Guide

make-gray-color [Function]

Arguments: luminance

■ Creates a color object. luminance is a real number between 0 and 1 inclusive. 0 means black

and 1 means white.

color-ihs [Generic function]

Arguments: color

■ Returns three values, the intensity, hue, and saturation components of color. The first

value is a real number between 0 and the square root of 3 (inclusive). The second and third values are

real numbers between 0 and 1 (inclusive).

color-rgb [Generic function]

Arguments: color

■ Returns three values, the red, green, and blue components of color. The values are real

numbers between 0 and 1 inclusive.

make-contrasting-inks [Function]

Arguments: n &optional k

■ Makes a vector of n inks with different appearances.

If k (an integer between 0 and n-1) is supplied, make-contrasting-inks returns the k'th

design.

The value returned by contrasting-inks-limit (defined next) is the maximum number of contrast-

ing inks supported and so the maximum allowable value for n. If n is larger than the limit, make-
contrasting-inks signals an error. The limit is the value of contrasting-inks-limit,

defined next. This value should be at least 8 in any implementation.

The rendering of the design may be a color or a stippled pattern, depending on whether the output

medium supports color.

contrasting-inks-limit [Function]

Arguments: port

■ Returns the number of contrasting inks that the port port can generate. In Allegro CLIM, the

value on all platforms is at least 8.

Device colors

clim-utils:device-color [Class]

■ The class of colors that are specific to a particular display. Instances of this class represent partic-

ular entries in the colormap associated with a palette by referring to the particular pixel value.

clim-utils:device-color is a subclass of color.

clim-utils:device-color-pixel [Generic function]

Arguments: device-color

■ Returns the pixel value of device-color. For all ports pixel values are integers.
CLIM 2.2 User Guide 87

clim-utils:device-color-palette [Generic function]

Arguments: device-color

■ Returns the palette of device-color.

clim-utils:device-color-color [Generic function]

Arguments: device-color

■ Returns the actual color associated with device-color. This function looks up the particular entry

in the colormap associated with device-color.

clim-utils:make-device-color [Generic function]

Arguments: palette pixel

■ Creates and returns a device-color representing the pixel'th entry in the colormap associated

with palette. For all current ports pixel should be an integer.

Color conversion functionality

clim-utils:convert-rgb-to-ihs [Function]

Arguments: red green blue

■ Returns three values: intensity, hue and saturation. Converts an rgb color specification to ihs. Both

forms below evaluate to the same thing:

(clim-utils:convert-rgb-to-ihs r g b)

(color-ihs (make-rgb-color r g b))

clim-utils:convert-ihs-to-rgb [Function]

Arguments: intensity hue saturation

■ Returns three values: red, blue and green. Converts an ihs color specification to rgb. Both forms

below evaluate to the same thing:

(clim-utils:convert-ihs-to-rgb i h s)
(color-rgb (make-ihs-color i h s))

6.2.1 Dynamic colors and layered colors

Dynamic colors
A dynamic color can be the value of the :ink argument. Drawing with a dynamic color has the same effect

as drawing with a member of the class color except that the actual color displayed on the screen can be

quickly changed. Dynamic colors rely on the display hardware providing writable color maps. At any one

time a dynamic color is associated with an actual color and that is the color which appears on the display.

make-dynamic-color [Generic function]

Arguments: &key (:color +black+)

■ Returns a design which is displayed as the solid design given as the color argument.

dynamic-color-color [Generic function]

Arguments: dynamic-color

■ Returns the actual color associated with the given dynamic color.
88 CLIM 2.2 User Guide

(setf dynamic-color-color) [Generic function]

Arguments: color dynamic-color

■ Changes the actual color associated with dynamic-color to color and returns color. If any

drawing has been done with dynamic-color, changes to the displayed color will be immediate.

Note that this has the same effect as recolor-dynamic-color.

recolor-dynamic-color [Generic function]

Arguments: dynamic-color color

■ Changes the actual color associated with dynamic-color to color and returns color. If any

drawing has been done with dynamic-color, changes to the displayed color will be immediate.

Note that this has the effect as (setf dynamic-color-color). However, recolor-
dynamic-color can also be used with layered (see below).

with-delayed-recoloring [Macro]

Arguments: &body body

■ During the execution of body any calls to recolor-dynamic-color or (setf dynamic-
color-color) do not take any effect and are instead cached until exiting the extent of with-
delayed-recoloring at which time they all take effect. In the case of nested with-
delayed-recoloring, no color changes will take place until exiting the extent of the outermost

with-delayed-recoloring.

■ This macro is provided to take advantage of the fact that certain window systems allow multiple

color map entries to be written in one go.

Layered colors
A layered color may be the value of the :ink argument. Layered colors provide multiple layers of inde-

pendent colors such that drawing can be performed which affects some layers and not others. This facility

can be used to perform animation and fast overlays.

Conceptually a layered color is an n-dimensional array of dynamic colors where n is the number of layers.

Initially, on creation of the layered color, each of the dynamic colors is set to +black+. Each layer is a

positive integer specifying one dimension of the array. The total number of dynamic colors defined is given

as the product of all the layers.

A group color is specified by a set of layers in much the same way as the dimensions of a layered color

are defined. The layers of a group color act as indices into the array of dynamic colors associated with the

layered color. Group colors can be specified with one or more layers as nil. The affect of this is to define

an incomplete group color which is associated with more than one dynamic color. If none of the layers are

specified as nil then the group color is complete.

A complete layered color specifies exactly one dynamic color.

Note that the dynamic colors associated with each of all the possible complete layered colors forms a non

overlapping and exhaustive set of all the dynamic colors associated with the layered color set.

Drawing with a complete layered color is the same as drawing with the single dynamic color.

A complete layered color can be mutated with recolor-dynamic-color giving the layered color

as the first argument. Therefore, though the color drawn with is fully specified, the actual color displayed

depends on what real color the dynamic color is associated with.

An incomplete layered color specifies several dynamic colors. The number of dynamic colors is given by

the product of those layers in the layered color for which the corresponding layer in the layered color is nil.

The actual set of dynamic colors specified is given as those dynamic colors whose indices in the layer's asso-

ciated array match the corresponding layers of the layered color with any nils acting as wildcards.
CLIM 2.2 User Guide 89

Note that the dynamic colors associated with each of all the possible incomplete layered colors forms an

overlapping and exhaustive set of all the dynamic colors associated with the layer.

Drawing with an incomplete layered color is in effect a two stage process. Firstly a complete layered

color is made from the incomplete layered color and then that complete layered color is drawn with as

described in the previous paragraph. To make the complete layered color, each nil in the incomplete lay-

ered color is replaced by the corresponding layer of the complete layered color which is being drawn over.

Conceptually this process is performed on each pixel on which the incomplete layered color is drawn. The

effects of drawing with an incomplete color on any pixels which were not previously drawn with a layered

color is undefined.

An incomplete layered color can be mutated with recolor-dynamic-color giving the layered

color as the first argument. Each of the set of dynamic colors associated with the layered color is mutated.

Since the dynamic colors associated with two different incomplete layered colors can overlap, it is impor-

tant to take care in the order in which calls to recolor-dynamic-color are made.

make-layered-color-set [Function]

Arguments: &rest layers

■ Returns a layered color set with the specified layers. Each layer must be a positive integer. Note

that using many or large layers can result in a large array of dynamic colors all of which need to be

allocated as writable entries in the host display's color map. This can lead to rapid consumption of

the hosts color resources.

layered-color [Generic function]

Arguments: set &rest layers

■ Returns a layered color with the specified layers. The number of layers given must be the same

as the number of layers with which set was created and each layer must be either nil or a non-

negative integer which is less than the corresponding layer in the layer. If any of the layers are nil
then the layered color is incomplete, otherwise it is complete.

6.3 Predefined color names in CLIM

Where the host window system has a database of named colors it is possible to query the database to find

the rgb color corresponding to a particular name. This can be useful in helping the sharing of limited color

resources as any other application running on that display may be able to share colors if they also are select-

ing colors from the database. It also is useful in maintaining color consistency across platforms because the

rgb values in a particular host's database should be adjusted to handle any variations in screen hardware

resulting in device dependent rgb values.

Therefore, there are only a few pre-defined colors in CLIM. The following symbols name these pre-

defined colors. All are in the clim package.

Colors available on your machine are typically named in some system file. For X11R4, the file naming

available predefined colors is typically something like /X11/R4/mit/rgb/rgb.txt (check with your system

administrator for the equivalent file on your machine). The color corresponding to the color names in that

file can be found by calling find-named-color.

+black+ +white+ +red+ +green+

+blue+ +magenta+ +cyan+ +yellow+
90 CLIM 2.2 User Guide

find-named-color [Function]

Arguments: name palette &key errorp

■ Finds the color named name in the palette palette. The palette associated with the current

application frame can be found by calling frame-palette.

If the color is not found and errorp is t, the color-not-found error is signaled. Otherwise

if the color is not found, this function returns nil.

Here are a couple of examples. We use the palette for *test-frame*.

(find-named-color "light grey" (frame-palette *test-frame*))
→ #<CLIM-UTILS:GRAY-COLOR 66% Gray @ #x107d932>
(find-named-color "navy blue" (frame-palette *test-frame*))
→ #<CLIM-UTILS:RG-COLOR R=0.13672084 G=0.13672084 B=0.55469596 @ #x107de22>
CLIM 2.2 User Guide 91

[This page intentionally left blank.]
92 CLIM 2.2 User Guide

Chapter 7 Drawing with designs in
CLIM

7.1 Concepts of Designs in CLIM

A design is an object that represents a way of arranging colors and opacities in the drawing plane. The sim-

plest kind of design is a color, which simply places a constant color at every point in the drawing plane. See

the chapter 6 Drawing in color in CLIM.

This chapter describes more complex kinds of design, which place different colors at different points in

the drawing plane or compute the color from other information, such as the color previously at that point in

the drawing plane. Not all of the features described in this chapter are supported in the present implemen-

tation.

Recall that the drawing functions work by selecting a region of the drawing plane and painting it with

color, and that the :ink drawing option specifies how to color this region. The value of the :ink drawing

option can be any kind of design, any member of the class design. The values of medium-
foreground, medium-background, and medium-ink are also designs. Not all designs are sup-

ported as the arguments to the :ink drawing option, or as a foreground or background in the present imple-

mentation.

A design can be characterized in several different ways:

• All designs are either bounded or unbounded. Bounded designs are transparent everywhere

beyond a certain distance from a certain point. Drawing a bounded design has no effect on the

drawing plane outside that distance. Unbounded designs have points of non-zero opacity

arbitrarily far from the origin. Drawing an unbounded design affects the entire drawing plane.

• All designs are either uniform or non-uniform. Uniform designs have the same color and opacity

at every point in the drawing plane. Uniform designs are always unbounded, unless they are

completely transparent.

• All designs are either solid or translucent. At each point a solid design is either completely opaque

or completely transparent. A solid design can be opaque at some points and transparent at others.

In translucent designs, at least one point has an opacity that is intermediate between completely

opaque and completely transparent.

• All designs are either colorless or colored. Drawing a colorless design uses a default color

specified by the medium's foreground design. This is done by drawing with

(compose-in +foreground-ink+ the-colorless-design).

A variety of designs are available. See the following sections:

6.1 Concepts of drawing in color in CLIM

7.2 Indirect ink in CLIM

7.3 Flipping ink in CLIM
CLIM 2.2 User Guide 93

7.4 Concepts of patterned designs in CLIM

7.5 Concepts of compositing and translucent ink in CLIM

7.6 Complex designs in CLIM

7.2 Indirect Ink in CLIM

Drawing with an indirect ink looks the same as drawing another design named directly. For example,

+foreground-ink+ is a design that draws the medium's foreground design. Indirect inks exist as an

abbreviation for using medium-foreground or medium-background, and for the benefit of output

recording. For example, one can draw with +foreground-ink+, change to a different medium-
foreground, and replay the output record; the replayed output will come out in the new color.

If the current foreground is the color red, drawing with +foreground-ink+ means to draw with the

foreground, whatever it is. On the other hand, drawing with +red+ means to draw with the color red, even

if the foreground is changed to green.

You can change the foreground or background design at any time. This changes the contents of the draw-

ing plane. Changing the background has the effect of erasing the drawing plane, drawing the new back-

ground design all over the drawing plane, and then replacing everything that was ever drawn (provided it

was saved in the output history) is redrawn using the new foreground and background.

+foreground-ink+ is the default value of the :ink drawing option.

If an infinite recursion is created using an indirect ink, an error is signaled when the recursion is created,

when the design is used for drawing, or both.

In the present implementation, the foreground and background must be color objects.

Two indirect inks are defined:

+foreground-ink+ [Constant]

■ An indirect ink that uses the medium's foreground design.

+background-ink+ [Constant]

■ An indirect ink that uses the medium's background design.

7.3 Flipping Ink in CLIM

You can use a flipping ink to interchange occurrences of two colors. The purpose of flipping is to allow the

use of XOR hacks for temporary changes to the display. On X Windows, only +flipping-ink+ is sup-

ported at present

make-flipping-ink [Function]

Arguments: design1 design2

■ Returns a design that interchanges occurrences of two designs. Drawing this design over a back-

ground changes the color in the background that would have been drawn by design1 at that point

into the color that would have been drawn by design2 at that point, and vice versa.

■ In the present implementation, both designs must be colors.
94 CLIM 2.2 User Guide

+flipping-ink+ [Constant]

■ A flipping ink that flips +foreground-ink+ and +background-ink+. You can think of

this as an xor on monochrome displays.

7.4 Concepts of patterned designs in CLIM

Patterned designs are non-uniform designs that have a certain regularity. These include patterns, stencils,

tiled designs, and transformed designs.

In the present implementation, patterned designs are not supported as a foreground or background, and

the only patterned designs supported as the :ink drawing option are tilings of patterns of +background-
ink+ (or +transparent-ink+) and +foreground-ink+.

Patterns and Stencils
Patterning creates a bounded rectangular arrangement of designs. Drawing a pattern draws a different

design in each rectangular cell of the pattern. To create a pattern, use make-pattern. To repeat a pattern

so it fills the drawing plane, apply make-rectangular-tile to a pattern.

A stencil is a special kind of pattern that contains only opacities. The name stencil refers to their use with

compose-in and compose-over.

Tiling
Tiling repeats a rectangular portion of a design throughout the drawing plane. This is most commonly used

with patterns. Use make-rectangular-tile to make a tiled design.

Transforming Designs
The functions transform-region and untransform-region accept any region as their second

argument and apply a coordinate transformation to the region. The result is a region that might be freshly

constructed or might be an existing object. (There are no tools for transforming patterns.)

Transforming a uniform region simply returns the argument. Transforming a composite, flipping, or indi-

rect region applies the transformation to the component region(s).

7.4.1 Operators for patterned designs in CLIM

make-pattern [Function]

Arguments: array designs

■ Creates a pattern design that has (array-dimension 2d-array 0) cells in the vertical

direction and (array-dimension 2d-array 1) cells in the horizontal direction.

array must be a two-dimensional array of non-negative integers, each of which is less than the

length of designs. designs must be a sequence of designs. The design in cell (i,j) of the result-

ing pattern is the n'th element of designs, if n is the value of (aref array i j). For example,

array can be a bit-array and designs can be a list of two designs, the design drawn for 0 and the

one drawn for 1.

Each cell of a pattern can be regarded as a hole that allows the design in it to show through. Each

cell might have a different design in it. The portion of the design that shows through a hole is the por-
CLIM 2.2 User Guide 95

tion on the part of the drawing plane where the hole is located. In other words, incorporating a design

into a pattern does not change its alignment to the drawing plane, and does not apply a coordinate

transformation to the design. Drawing a pattern collects the pieces of designs that show through all

the holes and draws the pieces where the holes lie on the drawing plane. The pattern is completely

transparent outside the area defined by the array.

Each cell of a pattern occupies a 1 by 1 square. You can use transform-region to scale the

pattern to a different cell size and shape, or to rotate the pattern so that the rectangular cells become

diamond-shaped. Applying a coordinate transformation to a pattern does not affect the designs that

make up the pattern. It only changes the position, size, and shape of the cells' holes, allowing differ-

ent portions of the designs in the cells to show through. Consequently, applying make-
rectangular-tile to a pattern of nonuniform designs can produce a different appearance in

each tile. The pattern cells' holes are tiled, but the designs in the cells are not tiled and a different

portion of each of those designs shows through in each tile.

■ If array or designs is modified after calling make-pattern, the consequences are unspec-

ified.

IMPLEMENTATION LIMITATION: In the present implementation, patterned designs are not

supported as a foreground or background.

pattern-width [Function]

Arguments: pattern

■ Returns the width of the pattern pattern (that is, (array-dimension 2d-array 1) of

the 2d-array used to create the pattern).

pattern-height [Function]

Arguments: pattern

■ Returns the height of the pattern pattern (that is, (array-dimension 2d-array 0) of

the 2d-array used to create the pattern).

pattern-array [Generic function]

Arguments: pattern

Returns the array associated with pattern. The following holds:

(pattern-array (make-pattern array designs)) -> array

pattern-designs [Generic function]

Arguments: pattern

■ Returns the designs associated with pattern. The following holds:

(pattern-designs (make-pattern array designs)) -> designs

with the exception that make-pattern may coerce designs to an equivalent sequence of a dif-

ferent type.

make-pattern-from-pixmap [Generic function]

Arguments: pixmap &key x y width height

■ Creates and returns a pattern from a pixmap. x and y and width and height define the area of

the pixmap that is used. x and y default to 0. width and height default to the respective dimen-

sions of pixmap.
96 CLIM 2.2 User Guide

make-stencil [Function]

Arguments: array

■ Creates a pattern design that has (array-dimension array 0) cells vertically and

(array-dimension array 1) cells horizontally. array must be a two-dimensional array of

real numbers between 0 and 1. The design in cell (i,j) of the resulting pattern is the value of the fol-

lowing:

(clim:make-opacity (aref array i j))

The stencil opacity of the result at a given point in the drawing plane depends on which cell that

point falls in. If the point is in cell (i,j), the stencil opacity is (aref array i j). The stencil opac-

ity is 0 outside the region defined by the array.

Each cell of a pattern occupies a 1 x 1 square. The entity protocol can be used to scale the pattern

to a different cell size and shape, or to rotate the pattern so that the rectangular cells become diamond-

shaped.

■ If array is modified after calling make-stencil, the consequences are unspecified.

make-rectangular-tile [Function]

Arguments: design width height

■ Creates a design that tiles the specified rectangular portion of design across the entire drawing

plane. The resulting design repeats with a period of width horizontally and height vertically. The

portion of the argument design that appears in each tile is a rectangle whose top-left corner is at

(0,0) and whose bottom-right corner is at (width,height).

The repetition of design is accomplished by applying a coordinate transformation to shift

design into position for each tile, and then extracting an width by height portion of that design.

Applying a coordinate transformation to a rectangular tile does not change the portion of the

argument design that appears in each tile. It can change the period, phase, and orientation of the

repeated pattern of tiles.

draw-pattern* [Function]

Arguments: stream pattern x y &key clipping-region transformation

■ Draws the pattern pattern on stream at the position (x,y). pattern is a design created by

calling make-pattern.

For example, the following creates a pattern whose zero values are colored with the background of

stream and whose one values are colored with the foreground of stream

(clim:make-pattern #2A((0 0 0 1 1 0 0 0)
 (0 0 1 1 1 1 0 0)
 (0 1 1 1 1 1 1 0)
 (1 1 1 0 0 1 1 1)
 (1 1 1 0 0 1 1 1)
 (0 1 1 1 1 1 1 0)
 (0 0 1 1 1 1 0 0)
 (0 0 0 1 1 0 0 0))
 (list clim:+background-ink+ clim:+foreground-ink+))

You could also make the above pattern translucent by using +transparent-ink+ instead of

+background-ink+. In that case, the zero values would allow the previous output to show through.
CLIM 2.2 User Guide 97

7.4.2 Reading patterns from X11 image files

Allegro CLIM supplies some functions that read standard X11 bitmap and pixmaps files.

read-bitmap-file [Function]

Arguments: pathname &key (format :bitmap) (port (find-port))

■ Reads a bitmap file named by pathname. port specifies the port; it defaults to (find-
port). format can be one of: the keywords in table 7.1. The default is :bitmap.

■ read-bitmap-file returns the 2-dimensional array of pixel values and returns a second

value, a sequence of CLIM colors or color names, when format is :pixmap or :pixmap-3. Col-

ors are returned unless port is nil, in which case color names are returned.

make-pattern-from-bitmap-file [Function]

Arguments: file &key designs (format :bitmap) (port (find-port))

■ The function reads the contents of the bitmap or pixmap file file and creates a pattern object

that represents the file.

designs is a sequence of CLIM designs (typically color objects) that will be used as the second

argument in a call to make-pattern. designs must be supplied if no second value will be

returned from read-bitmap-file.

format is as for read-bitmap-file above

port specifies the port. It defaults to (find-port).

7.5 Concepts of compositing and translucent ink in CLIM

Translucent ink supports the following drawing techniques:

• Controlling Opacity

• Blending Colors

• Compositing

Controlling Opacity
Opacity controls how new output covers previous output. Intermediate opacity values result in color blend-

ing so that the earlier picture shows through what is drawn on top of it.

An opacity is a real number between 0 and 1; 0 is completely transparent, 1 is completely opaque, and

fractions are translucent. The opacity of a design is the degree to which it hides the previous contents of the

drawing plane when it is drawn. Opacity can vary from totally opaque to totally transparent.

Table 7.1: Possible values for :format argument:

Value Meaning

:bitmap X bitmap format

:pixmap X pixmap format version 1 (also know as xpm)

:pixmap-3 X pixmap format version 3 (also know as xpm)
98 CLIM 2.2 User Guide

Use make-opacity or make-stencil to specify opacity.

IMPLEMENTATION LIMITATION: Opacity values that are not either fully transparent or fully

opaque are not fully supported. Translucent opacities are simulated by using stipples.

Color Blending
Drawing a design that is not completely opaque at all points allows the previous contents of the drawing

plane to show through. The simplest case is drawing a solid design. Where the design is opaque, it replaces

the previous contents of the drawing plane. Where the design is transparent, it leaves the drawing plane

unchanged.

In the more general case of drawing a translucent design, the resulting color is a blend of the design's color

and the previous color of the drawing plane. For purposes of color blending, the drawn design is called the

foreground and the drawing plane is called the background.

The function compose-over performs a similar operation. It combines two designs to produce a

design, rather than combining a design and the contents of the drawing plane to produce the new contents

of the drawing plane. For purposes of color blending, the first argument to compose-over is called the

foreground and the second argument is called the background.

Color blending is defined by an ideal function that operates on the color and opacity at a single point.

(r1,g1,b1,o1) are the foreground color and opacity. (r2,g2,b2,o2) are the background color and opacity.

(r3,g3,b3,o3) are the resulting color and opacity:

F:(r1,g1,b1,o1,r2,g2,b2,o2) → (r3,g3,b3,o3)

The color blending function F is conceptually applied at every point in the drawing plane.

The function F performs linear interpolation on all four components:

o3 = o1+(1-o1)*o2
r3 = (o1*r1+(1-o1)*o2*r2)/o3
g3 = (o1*g1+(1-o1)*o2*g2)/o3
b3 = (o1*b1+(1-o1)*o2*b2)/o3

In Allegro CLIM, F is implemented exactly only if o1 is zero or one or if o2 is zero. If o1 is zero, the

result is the background. If o1 is one or o2 is zero, the result is the foreground. For fractional opacity values,

CLIM will deviate from the ideal color blending function either because the current hardware has limited

opacity resolution and CLIM can compute a different color blending function much more quickly.

If a medium's background design is not completely opaque at all points, the consequences are unspecified.

Consequently, a drawing plane is always opaque and drawing can use simplified color blending that assumes

o2 = 1 and o3 = 1. However, compose-over must handle a non-opaque background correctly.

Compositing
IMPLEMENTATION LIMITATION: Compositing is not supported in this release.

Compositing creates a design whose appearance at each point is a composite of the appearances of two other

designs at that point. Three varieties of compositing are provided: composing over, composing in, and com-

posing out.

You can use compose-over, compose-in, or compose-out to create CLIM composite designs.
CLIM 2.2 User Guide 99

7.5.1 Operators for Translucent Ink and Compositing in CLIM

The following functions can be used to create an opacity object, and to compose a new ink from a color and

an opacity. (The three composition operators can also be used to compose more complex designs.)

IMPLEMENTATION LIMITATION: Note that the present implementation of CLIM only sup-

ports opacities that are either fully opaque (opacity 1) or fully transparent (opacity 0).

make-opacity [Function]

Arguments: value

■ Creates a member of class opacity whose opacity is value, which is a real number in the

range from 0 to 1 (inclusive), where 0 is fully transparent and 1 is fully opaque, but note implemen-

tation warning above: only 1 and 0 are supported.

opacity-value [Generic function]

Arguments: opacity

■ Returns the value of opacity, which is a real number in the range from 0 to 1 (inclusive).

+transparent-ink+ [Constant]

■ When you draw a design that has areas of +transparent-ink+, the former background

shows through in those areas. Typically, +transparent-ink+ is used as one of the inks in a pat-

tern so that parts of the pattern are transparent.

For example, the following creates a pattern whose zero values allow the previous draw areas of the

stream to show through:

(clim:make-pattern #2A((0 0 0 1 1 0 0 0)
(0 0 1 1 1 1 0 0)

 (0 1 1 1 1 1 1 0)
 (1 1 1 0 0 1 1 1)
 (1 1 1 0 0 1 1 1)
 (0 1 1 1 1 1 1 0)
 (0 0 1 1 1 1 0 0)
 (0 0 0 1 1 0 0 0))

 (list clim:+transparent-ink+ clim:+foreground-ink+))

compose-over [Generic function]

Arguments: design1 design2

IMPLEMENTATION LIMITATION: compose-over is not currently supported.

■ Composes a design that is equivalent to design1 on top of design2. Drawing the resulting

design produces the same visual appearance as drawing design2 and then drawing design1, but

might be faster and might not allow the intermediate state to be visible on the screen.

If both arguments are regions, compose-over is the same as region-union.

The result returned by compose-over might be freshly constructed or might be an existing

object.

compose-in [Generic function]

Arguments: design1 design2

IMPLEMENTATION LIMITATION: compose-in is not currently supported.
100 CLIM 2.2 User Guide

■ Composes a design by using the color (or ink) of design1 and clipping to the inside of

design2. That is, design2 specifies the mask to use for changing the shape of the design.

More precisely, at each point in the drawing plane the resulting design specifies a color and an

opacity as follows: the color is the ink of design1. The opacity is the opacity of design1, multi-

plied by the stencil opacity of design2.

The stencil opacity of a design at a point is defined as the opacity that would result from drawing

the design onto a fictitious medium whose drawing plane is initially completely transparent black

(opacity and all color components are zero), and whose foreground and background are both opaque

black. (With this definition, the stencil opacity of a member of class opacity is simply its value.)

■ If design2 is a solid design, the effect of compose-in is to clip design1 to design2. If

design2 is translucent, the effect is a soft matte.

■ If both arguments are regions, compose-in is the same as region-intersection.

■ The result returned by compose-inmight be freshly constructed or might be an existing object.

compose-out [Generic function]

Arguments: design1 design2

IMPLEMENTATION LIMITATION: compose-out is not currently supported.

■ Composes a design by using the color (or ink) of design1 and clipping to the outside of

design2. That is, design2 specifies the mask to use for changing the shape of the design.

More precisely, at each point in the drawing plane the resulting design specifies a color and an

opacity as follows: the color is the ink of design1. The opacity is the opacity of design1, multi-

plied by 1 minus the stencil opacity of design2.

If design2 is a solid design, the effect of compose-out is to clip design1 to the comple-

ment of design2. If design2 is translucent, the effect is a soft matte.

■ If both arguments are regions, compose-out is the same as region-difference.

■ The result returned by compose-out might be freshly constructed or might be an existing

object.

7.6 Complex Designs in CLIM

IMPLEMENTATION LIMITATION: The designs described in this section are not supported as

the :ink drawing option in the present implementation.

You can use make-design-from-output-record to make a design that replays output-record
when drawn using draw-design.

draw-design [Generic function]

Arguments: design stream &key ink clipping-region transformation line-
style unit thickness joint-shape cap-shape dashes text-style
text-family text-face text-size

IMPLEMENTATION LIMITATION: draw-design is not currently supported.

■ Draws design on stream. args are additional keyword arguments that depend on the type of

the design. For example, for designs that are paths (such as lines and unfilled circles), you may

include the :line-style keyword.

■ The design types are:
CLIM 2.2 User Guide 101

area

Paints the specified region of the drawing plane with stream's current ink.

path

Strokes the path with stream's current ink under control of the line-style.

point

The same as draw-point.

a color or an opacity

Paints the entire drawing plane (subject to the clipping region).

+nowhere+

This has no effect.

■ If design is a non-uniform design this paints the design positioned at coordinates (x=0, y=0).

■ draw-design is currently supported for the following designs:

• designs created by the geometric object constructors (such as make-line and make-
ellipse)

• designs created by compose-in, where the first argument is an ink and the second argument

is a design

• compose-over of designs created by compose-in

• designs returned by make-design-from-output-record

make-design-from-output-record [Function]

Arguments: record

IMPLEMENTATION LIMITATION: make-design-from-output-record is not cur-

rently supported.

■ Makes a design that replays the output record record when drawn by draw-design.

■ Presently, only output records all of whose leaves are graphics displayed output records (such as

the output records created by draw-line* and draw-ellipse*) can be turned into designs by

make-design-from-output-record.

■ You can use transform-region on the result of make-design-from-output-
record in order to apply a transformation to it.

Any member of the class region is a solid, colorless design. The design is opaque at points in the region

and transparent elsewhere.

See the section 3.6 General Geometric Objects and Regions in CLIM.

7.7 Achieving different drawing effects in CLIM

Here are some examples of how to achieve a variety of commonly used drawing effects:

Drawing in the foreground color

Use the default, or specify :ink +foreground-ink+
or :ink (medium-foreground medium)

Erasing

Specify :ink +background-ink+
or :ink (medium-background medium)
102 CLIM 2.2 User Guide

Drawing in color

Specify :ink +green+, or :ink (make-color-rgb 0.6 0.0 0.4),

or :ink (find-named-color "green" (frame-palette frame))

Painting a gray or colored wash over a display

IMPLEMENTATION LIMITATION: opacities are not implemented so these examples will not

work.

Specify a translucent design as the ink, such as

:ink (clim:compose-in +black+ (clim:make-opacity 0.25))

:ink (clim:compose-in +red+ (clim:make-opacity 0.1))

:ink (clim:compose-in +foreground-ink+ (clim:make-opacity 0.75))

The last example can be abbreviated as :ink (make-opacity 0.75). On a non-color, non-

grayscale display this will turn into a stipple.

Drawing an opaque gray

Specify :ink (make-gray-color 0.25) to draw in a shade of gray independent of the win-

dow's foreground color. On a non-color, non-grayscale display this will turn into a stipple.

Drawing a faded but opaque version of the foreground color

IMPLEMENTATION LIMITATION: opacities are not currently implemented so this example

will not work.

To draw at 25% of the normal contrast, specify:

:ink (clim:compose-over

(clim:compose-in clim:+foreground-ink+

(clim:make-opacity 0.25))

clim:+background-ink+)

On a non-color, non-grayscale display this will probably turn into a stipple.

Drawing a stipple of little bricks

Specify :ink bricks, where bricks is defined as:

(clim:make-rectangular-tile

(clim:make-pattern #2a((0 0 0 1 0 0 0 0)

 (0 0 0 1 0 0 0 0)

 (0 0 0 1 0 0 0 0)

 (1 1 1 1 1 1 1 1)

 (0 0 0 0 0 0 0 1)

 (0 0 0 0 0 0 0 1)

 (0 0 0 0 0 0 0 1)

 (1 1 1 1 1 1 1 1))

(list clim:+background-ink+

 clim:+foreground-ink+))

8 8)
CLIM 2.2 User Guide 103

Drawing a tiled pattern

Specify

:ink (clim:make-rectangular-tile (clim:make-pattern array colors))

Drawing a pattern

Use

(clim:draw-pattern* medium (clim:make-pattern array colors) x y)
104 CLIM 2.2 User Guide

Chapter 8 Presentation types in
CLIM

8.1 Concepts of CLIM presentation types

In object-oriented programming systems, applications are built around internal objects that model some-

thing in the real world. For example, an application that models a university has objects representing stu-

dents, professors, and courses. A CAD system for designing circuits has objects representing gates,

resistors, and so on. A desktop publishing system has objects representing paragraphs, headings, and draw-

ings.

Users need to interact with the application objects. A CLIM user interface enables users to see a visual

representation of the application objects, and to operate on them. The objects that appear on the screen are

not the application objects themselves; they are objects called presentations that are one step removed. The

visual representation of an object is a stand-in for the application object itself, in the same sense that the

word ‘cat’ (or a picture of a cat) is a stand-in for a real cat.

In most user interface systems, the interface is constructed in terms of the objects in the toolkit; these

objects must be converted, by the programmer, into the objects of the application. For example, choosing

one of a set of objects might require you to build a radio box that has in it a set of buttons. Each of these

buttons stands for one of the objects being chosen among. You must also write code that converts each of

these buttons back into an application object, so that when the end-user picks on of the buttons, the correct

application object is chosen.

If you later decide that the radio box is too cumbersome (perhaps because there are many selections in

it), and you wish to change the user interface to use a list pane or option pane, you must then rewrite all of

this code to use the new toolkit objects for list or option panes.

In CLIM, the user interface is constructed is terms of the application objects, and CLIM worries about

the toolkit objects. Taking the same example, all you need to do is to specify that you wish to select one of

the application objects by using the member type. CLIM deduces that this can be done via a radio box, and

creates the radio box for you. If you later decide to use a list pane or option pane, you can advise CLIM to

do this by explicitly specifying a view. At no time do you need to worry about the toolkit objects.

The most basic part of designing a CLIM user interface is to specify how users will interact with the appli-

cation objects. There are two directions of interaction: you must present application objects to the user as

output, and you must accept input from the user that indicates operations on the application objects. This is

done with two basic functions, present and accept, and some related functions.

8.1.1 Presentations

CLIM keeps track of the association between a visual representation of an object and the object itself. CLIM

maintains this association in a data structure called a presentation. A presentation embodies three things:
CLIM 2.2 User Guide 105

• The underlying application object

• Its presentation type

• Its visual representation

8.1.2 Output with its semantics attached

For example, a university application has a ‘student’ application object. The user sees a visual representa-

tion of a student, which might be a textual representation, or a graphical representation (such as a form with

name, address, student id number), or even an image of the face of the student. The presentation type of the

student is ‘student’; that is, the semantic type of the object that appears on the screen is ‘student’. Since the

type of a displayed object is known, CLIM knows which operations are appropriate to perform on the dis-

played object, irrespective of what visual representation is being used for the object. For example, when a

student is displayed, it is possible to perform operations such as ‘send tuition bill’ or ‘show transcript’.

8.1.3 Input context

Presentations are the basis of many of the higher-level application-building tools, which use accept to get

input and present to do output. A command that takes arguments as input states the presentation type of

each argument. This sets up an input context, in which presentations of that type are sensitive (they are high-

lighted when the pointer passes over them). When the user gives the ‘send tuition bill’ command, the input

context is looking for a student, so any displayed students are sensitive. Presentations that have been output

in previous user interactions retain their semantics. In other words, CLIM has recorded the fact that a stu-

dent has been displayed, and has saved this information so that whenever the input context expects a stu-

dent, all displayed students are sensitive.

8.1.4 Inheritance

CLIM presentation types can be designed to use inheritance, just as CLOS classes do. For example, a uni-

versity might need to model night-student, which is a subclass of student. When the input context

is looking for a student, night students are sensitive because they are represented as a subtype of student.

The set of presentation types forms a type lattice, an extension of the Common Lisp CLOS type lattice.

When a new presentation type is defined as a subtype of another presentation type, it inherits all the

attributes of the supertype except those explicitly overridden in the definition.

8.1.5 Presentation translators

You can define presentation translators to make the user interface of your application more flexible. For

example, suppose the input context is expecting a command. Since CLIM commands are first class appli-

cation objects, in this input context, all displayed commands are sensitive, so the user can point to one to

execute it. However, suppose the user points to another kind of displayed object, such as a student. In the

absence of a presentation translator, the student is not sensitive because the user must enter a command and

cannot enter anything else to this input context.
106 CLIM 2.2 User Guide

In the presence of a presentation translator that translates from students to commands, however, the stu-

dent would be sensitive. In one scenario, the student is highlighted, and the middle pointer button does

‘show transcript’ of the student.

8.1.6 What the application programmer does

By the time you get to the point of designing the user interface, you have probably designed the rest of the

application and know what the application objects are. At this point, you need to do the following:

• First decide which types of application objects will be presented to the user as output and accepted

from the user as input.

• For each type of application object that the user will see, assign a corresponding presentation

type. You will need to define accept and present methods for these objects, unless these

methods can be inherited from a superclass. In many cases, this means simply using a predefined

presentation type. In other cases, you need to define a new presentation type. Usually the

presentation type is the same as the class of the application object.

• Decide which of the application's operations should be available from the user interface, and

define commands for each of these operations. These commands can be made available from a

variety of interfaces (such as menus or dialogs, command lines, and so on). This is a detail that

can be decided as you continue to develop the program.

• Use the application-building tools to specify the windows, menus, commands, and other elements

of the user interface. Most of these elements will use the presentation types of your objects.

8.2 How to specify a CLIM presentation type

This section describes how to specify a CLIM presentation type. For a complete description of CLIM pre-

sentation types, options, and parameters, see the section 8.5 Predefined presentation types in CLIM.

Several CLIM operators take presentation types as arguments. You specify them using a presentation type
specifier.

Most presentation type specifiers are also Common Lisp type specifiers, for example, the boolean pre-

sentation type is a Common Lisp type specifier. Not all presentation types are Common Lisp types, and not

all Common Lisp types are presentation types, but there is a lot of overlap.

A presentation type specifier appears in one of the following three patterns:

name

(name parameters...)

((name parameters...) options...)

Each presentation type has a name, which is usually a symbol naming the presentation type. The name

can also be a CLOS class object; this usage provides the support for anonymous CLOS classes.

The first pattern, name, indicates a simple presentation type, which can be one of the predefined presen-

tation types or a user-defined presentation type.

Examples of the first pattern are:

integer

A predefined presentation type
CLIM 2.2 User Guide 107

pathname

A predefined presentation type

boolean

A predefined presentation type

student

A user-defined presentation type

The second pattern, (name parameters...), supports parameterized presentation types, which are

analogous to parameterized Common Lisp types. (In effect, CLIM extends CLOS to allow parameterized

classes.) The parameters state a restriction on the presentation type, so a parameterized presentation type is

a specialization, or a subset, of the presentation type of that name with no parameters.

Examples of the second pattern are:

(integer 0 10)

A parameterized type indicating an integer in the range of zero through ten.

(string 25)

A parameterized type indicating a string whose length is 25.

(member :yes :no :maybe)

A parameterized type which can be one of the three given values, :yes, :no, and :maybe.

The third pattern, ((name parameters...) options...), enables you to additionally supply options

that affect the use or appearance of the presentation, but not its semantic meaning. The options are key-

word/value pairs. The options are defined by the presentation type. All presentation types accept the

:description option, which enables you to provide a string describing the presentation type. If pro-

vided, this option overrides the description specified in the define-presentation-type form, and

also overrides the describe-presentation-type presentation method.

For example, you can use this form to specify an octal integer from 0 to 10:

((integer 0 10) :base 8)

Some presentation type options may appear as an option in any presentation type specifier. Currently, the

only such option is :description.

8.3 Using CLIM presentation types for output

The reason for using presentations for program output is so that the objects presented will be acceptable to

input functions. When you use presentations, CLIM manages all of the bookkeeping that remembers the

presentations -- you needn't do any of this. What this means is that interfaces built using CLIM are live --

often, everything a user sees on the screen is active and available for input.

Suppose, for example, you present an object, such as 5, as a TV channel. When a command that takes a

TV channel as an argument is issued or when a presentation translation function is looking for such a thing,

the system will make that object sensitive. Also, when a command that is looking for a different kind of

object (such as a highway number), the object 5 is not sensitive, because that object represents a TV chan-

nel, not a highway number.

A presentation includes not only the displayed representation itself, but also the object presented and its

presentation type. When a presentation is output to a CLIM window, the object and presentation type are

remembered -- that is, the object and type of the display at a particular set of window coordinates are
108 CLIM 2.2 User Guide

recorded in the window's output history. Because this information remains available, previously presented

objects are themselves available for input to functions for accepting objects.

All of the above functionality is managed automatically by CLIM, but you can extend and modify the

behavior in application-specific ways. For instance, this can be used to improve performance.

8.3.1 CLIM operators for presenting typed output

An application can use the following operators to produce output that will be associated with a given Lisp

object and be declared to be of a specified presentation type. This output is saved in the window's output

history as a presentation. Specifically, the presentation remembers the output that was performed (by saving

the associated output record), the Lisp object associated with the output, and the presentation type specified

at output time. The object can be any Lisp object.

CLOS provides these top-level facilities for presenting output. with-output-as-presentation
is the most general operator, and present and present-to-string support common idioms.

with-output-as-presentation [Macro]

Arguments: (stream object type &key single-box
allow-sensitive-inferiors modifier parent record-type)
&body body

■ This macro generates a presentation from the output done in the body to the stream. In effect,

it gives separate access to the two aspects of present -- recording the presentation and drawing the

visual representation. The presentation's underlying object is object, and its presentation type is

type.

For information on the syntax of specifying a presentation type, see the section 8.2 How to spec-
ify a CLIM presentation type.

■ All arguments of this macro are evaluated. with-output-as-presentation returns a

presentation. Note that CLIM captures the presentation type for its own use, and you should not mod-

ify it once you have handed it to CLIM.

■ Each invocation of this macro results in the creation of a presentation object in the stream's output

history unless output recording has been disabled or :allow-sensitive-inferiors is spec-

ified nil at a higher level, in which case the presentation object is not inserted into the history.

■ The arguments behave as follows:

stream

The stream to which output should be sent. The default is *standard-output*.

single-box

Controls how CLIM determines whether the pointer is pointing at this presentation and controls

how this presentation is highlighted when it is sensitive. The possible values are:

nil

If the pointer is pointing at a visible piece of output (text or graphics) drawn as part of the

visual representation of this presentation, it is considered to be pointing at this presentation.

This presentation is highlighted by highlighting every visible piece of output that is drawn

as part of its visual representation. This is the default.

t

If the pointer's position is inside the bounding rectangle of this presentation, it is considered

to be pointing at this presentation. The presentation is highlighted by highlighting its

bounding rectangle.
CLIM 2.2 User Guide 109

:position

Like t for determining whether the pointer is pointing at this presentation, like nil for

highlighting. Supplying :single-box :position is useful when the visual represen-

tation of a presentation consists of one or more small graphical objects with a lot of space

between them. In this case the default behavior offers only small targets that the user might

find difficult to position the pointer over.

:highlighting

Like nil for determining whether the pointer is pointing at this presentation, like t for

highlighting. Supplying :single-box :highlighting is useful when the default

behavior produces an ugly appearance.

allow-sensitive-inferiors

When nil, specifies that nested calls to present or with-output-as-presentation
inside this one should not generate presentations. The initial default is t; when there are nested

calls to with-output-as-presentation, the default is sticky in that it is gotten from the

outer call to with-output-as-presentation.

modifier

Not implemented in this release. Supplies a function of one argument (the new value) that can

be called in order to store a new value for object after the user edits the presentation. The

default is nil.

record-type

This option is useful when you have defined a customized record type to replace CLIM's default

presentation output record type. It specifies the class of the output record to be created.

present [Function]

Arguments: object &optional presentation-type
&key (stream *standard-output*) view modifier acceptably
for-context-type single-box allow-sensitive-inferiors
sensitive query-identifier prompt record-type

■ Presents the object object whose presentation type is presentation-type to stream.

The manner in which the object is displayed depends on the presentation type of the object; the dis-

play is done by the type's present method for the given view.

■ The arguments behave as follows:

object

The object to be presented.

presentation-type

A presentation type specifier, which may be a presentation type abbreviation. This defaults to

(presentation-type-of object).

stream

The stream to which output should be sent. The default is *standard-output*.

view

An object representing a view. The default is (stream-default-view stream). For most

streams, the default view is the textual view, +textual-view+.

modifier

single-box

allow-sensitive-inferiors

These are as for with-output-as-presentation.
110 CLIM 2.2 User Guide

sensitive

If nil, no presentation is produced. The default is t.

acceptably

Defaults to nil, which requests the present method to produce output designed to be read by

the user. If t, this option requests the present method to produce output that can be parsed by

the accept method. You will rarely need to use this, since this option makes no difference for

most presentation types.

for-context-type

A presentation type indicating an input context. The present method can look at this to determine

if the object should be presented differently. For example, the present method for the

command presentation type uses this in order to determine whether to display a ":" before com-

mands in command-or-form contexts. The for-context-type argument defaults to

presentation-type. You will rarely need to use this, since this option makes no difference

for most presentation types.

record-type

This option is useful when you have defined a customized record type to replace CLIM's default

record type. It specifies the class of the output record to be created.

present-to-string [Function]

Arguments: object &optional presentation-type &key view acceptably
for-context-type string index

■ Presents an object into a string in such a way that it can subsequently be accepted as input by

accept-from-string.

■ present-to-string is the same as present within with-output-to-string. The

other arguments are the same as for present and with-output-as-presentation.

8.3.2 Additional functions for operating on presentations in CLIM

The following functions can be used to examine or modify presentations.

presentation [Class]

■ The protocol class that corresponds to a presentation. If you want to create a new class that obeys

the presentation protocol, it must be a subclass of presentation.

standard-presentation [Class]

■ The class that CLIM uses to represent presentations.

presentationp [Function]

Arguments: object

■ Returns t if and only if object is of type presentation.

presentation-object [Generic function]

Arguments: presentation

■ Returns the object represented by the presentation presentation. You can use setf on

presentation-object to change the object associated with the presentation.

■ If you write your own class of presentation, it must implement or inherit a method for this generic

function.
CLIM 2.2 User Guide 111

presentation-type [Generic function]

Arguments: presentation

■ Returns the presentation type of the presentation presentation. You can use setf on

presentation-type to change the presentation type associated with the presentation.

■ If you write your own class of presentation, it must implement or inherit a method for this generic

function.

8.4 Using CLIM presentation types for input

The primary means for getting input from the end user is accept. (Note that CLIM's command processor

is built on top of accept, so the following material applies to user input to the command processor as well

as to explicit calls to accept.) Characters typed in at the keyboard in response to a call to accept are

parsed, and the application object they represent is returned to the calling function. (The parsing is done by

the accept method for the presentation type.) Alternatively, if a presentation of the type specified by the

accept call has previously been displayed, the user can click on it with the pointer and accept returns

it directly (that is, no parsing is required).

Examples:
(clim:accept 'string) →
Enter a string: abracadabra
"abracadabra"
(clim:accept 'string) →
Enter a string [default abracadabra]: abracadabra
"abracadabra"

In the first call to accept, "abracadabra" was typed at the keyboard. In the second call to accept, the

user clicked on the keyboard-entered string of the first function. In both cases, the string object "abraca-

dabra" was returned.

In most circumstance, not every type of object is acceptable as input. Only an object of the presentation

type specified in the current call to accept function (or one of its subtypes) can be input. In other words,

the accept function establishes the current input context. For example, if the call to accept specifies an

integer presentation type, only a typed-in or a displayed integer is acceptable. Numbers displayed as integer

presentations would, in this input context, be sensitive, but those displayed as part of some other kind of

presentation, such as a file pathname, would not. Thus, accept controls the input context and thereby the

sensitivity of displayed presentations.

Clicking on a presentation of a type different from the input context may cause translation to an accept-

able object. For example, you could make a presentation of a file pathname translate to an integer -- say, its

length -- if you want. It is very common to translate to a command that operates on a presented object. For

more information on presentation translators, see the section 8.7 Presentation translators in CLIM.

We say above that the range of acceptable input is, typically, restricted. How restricted is strictly up to

you, the programmer. Using compound presentation types like and and or, and other predefined or spe-

cially devised presentation types gives you a high degree of flexibility and control over the input context.
112 CLIM 2.2 User Guide

8.4.1 CLIM operators for accepting input

CLIM provides the following top-level operators for accepting typed input. with-input-context is

the most general operator, and accept and accept-from-string support common idioms.

input-context [Variable]

■ The current input context. This will be a list, each element of which corresponds to a single call

to with-input-context. The first element of the list represents the context established by the

most recent call to with-input-context, and the last element represents the context established

by the least recent call to with-input-context.

■ The exact format of the elements in the list is unspecified, but the elements have dynamic extent.

input-context-type [Function]

Arguments: context-entry

■ Given one element from *input-context*, context-entry, this returns the presentation

type of the context entry.

with-input-context [Macro]

Arguments: (type &key override) (&optional object-var type-var event-
var options-var) form &body clauses

■ Establishes an input context of type type. You will rarely need to use this, since accept uses

this to establish an input context for you.

When override is nil (the default), this invocation of with-input-context adds its

context presentation type to the extant context. In this way an application can solicit more than one

type of input at the same time.

When override is t, it overrides the current input context rather than nesting inside the current

input context.

After establishing the new input context, form is evaluated. If no pointer gestures are made by

the end user during the execution of form, all of the values of form are returned.

Otherwise, if the user invoked a translator by clicking on an object, one of the clauses is exe-

cuted, based on the presentation type of the object returned by the translator. All of the values of that

clause are returned as the values of with-input-context.

During the execution of one of the clauses, object-var is bound to the object returned by

the translator, type-var is bound to the presentation type returned by the translator, and event-
var is bound to the event corresponding to the user's gesture. options-var is bound to any

options that the translator might have returned, and will be either nil or a list of keyword-value pairs.

clauses is constructed like a typecase statement clause list whose keys are presentation types.

Note that, when one of the clauses is executed, nothing is inserted into the input buffer. If you

want to insert input corresponding to the object the user clicked on, you must call replace-input
or presentation-replace-input.

■ Only the arguments type and override are evaluated.

(clim:with-input-context ('pathname)
 (path)
 (read)
 (pathname
 (format t "The pathname ~A was clicked on." path)))
CLIM 2.2 User Guide 113

accept [Function]

Arguments: type &rest accept-args &key stream view default default-type
history provide-default prompt prompt-mode display-default
query-identifier activation-gestures
additional-activation-gestures delimiter-gestures
additional-delimiter-gestures insert-default
(replace-input t) present-p (active-p t)

■ Requests input of the type from the stream. accept returns two values (or three values when

called inside of accepting-values), the object and its presentation type.

accept works by displaying a prompt, establishing an input context via with-input-
context, and then calling the accept presentation method for type and view.

Note that accept does not insert newlines. If you want to put prompts on separate lines, use

terpri.

■ The arguments behave as follows:

type

A presentation type specifier that indicates what type to read. type may be an presentation type

abbreviation. See the section 8.2 How to specify a CLIM presentation type.

stream

Specifies the input stream. The defaults is *standard-input*.

view

An object representing a view. The default is (stream-default-view stream). For most

streams, the default view is the textual view, +textual-view+. Under Allegro CLIM, the

default view inside of a dialog is the indirect view +gadget-dialog-view+.

default

Specifies the object to be used as the default value for this call to accept. If this keyword is not

supplied and provide-default is t, then the default is determined by taking the most recent

item from the presentation type history specified by the history argument. If default is sup-

plied and the input provided by the user is empty, then default and default-type are

returned as the two values from accept.

default-type

If default is supplied and the input provided by the user is empty, then default and

default-type are returned as the two values from accept. This defaults to type.

history

Specifies which presentation type's history to use for the input editor's yanking commands. The

default is to use the history for type. If history is nil, no history is used. It is almost never

necessary to provide this.

provide-default

Specifies whether or not to provide a default value for this call to accept if default is not

supplied. The default is nil.

prompt

Controls how acceptwill prompt the user. If prompt is t (the default), the prompt is a descrip-

tion of the type. If prompt is nil, prompting is suppressed. If it is a string, the string is dis-

played as the prompt. The default is t, which produces "Enter a type:" in a top-level accept
or "(type)" in a nested accept.
114 CLIM 2.2 User Guide

prompt-mode

Can be :normal (which is the default) or :raw, which suppresses putting a colon after the

prompt and/or default in a top-level accept and suppresses putting parentheses around the

prompt and/or default in a nested accept. It is sometimes useful to use :prompt-mode :raw
when writing complicated accept methods that recursively call accept.

display-default

When true, displays the default as part of the prompt, if one was supplied. When nil, the default

is not displayed. display-default defaults to t if there was a prompt, otherwise it defaults

to nil.

query-identifier

This option is used to supply a unique identifier for each call to accept inside accepting-
values. If it is not supplied, it defaults to and value generated from type and prompt. It is

generally best to explicitly use a :query-identifier inside of accepting-values,

because doing so can prevent bugs of omission, particularly when type may change between calls

to accept within accepting-values.

activation-gestures

A list of gestures that overrides the current activation gestures, which terminate input. See the sec-

tion 17.1 Input editing and built-in keystroke commands in CLIM. Generally,

:activation-gestures and :additional-activation-gestures are only used

inside complex accept methods for textual views that read multiple fields separated by some

delimiter.

additional-activation-gestures

A list of gestures that add to the activation gestures without overriding the current ones.

delimiter-gestures

A list of gestures that overrides the current delimiter gestures, which terminate an individual token

but not the entire input sentence. See the section 17.1 Input editing and built-in keystroke com-
mands in CLIM. You will rarely need to use this.

additional-delimiter-gestures

A list of gestures that add to the delimiter gestures without overriding the current ones.

insert-default

When true, inserts the default into the input buffer before getting input from the user. The default

for insert-default is nil.

replace-input

Controls whether input gotten by clicking the pointer should be inserted back into the input buffer.

The default is t. You will rarely need to use this.

active-p

Controls whether a call to accept within a dialog should produce an active field (that is, one

available for input). The default is t. Use this when you want to deactivate some field in a dialog.

Usually, the deactivated field will be grayed over.

present-p

is reserved for internal use by CLIM.

accept-from-string [Function]

Arguments: type string &key view default default-type
activation-gestures additional-activation-gestures
CLIM 2.2 User Guide 115

delimiter-gestures additional-delimiter-gestures
(start 0) end

■ Reads the printed representation of an object of type type from string. This function is like

accept, except that the input is taken from string, starting at the position start and ending at

end. view, default, and default-type are as in accept.

■ accept-from-string returns three values: the object, its presentation type, and the index in

string of the next character after the input.

■ If default is supplied, then the default and the default-type are returned if the input

string is empty.

The remaining arguments, activation-gestures, additional-activation-
gestures, delimiter-gestures, and additional-delimiter-gestures, are as for

accept.

8.5 Predefined presentation types in CLIM

This section documents predefined CLIM presentation types, presentation type options, and parameters.

For more information on how to use these presentation types, see the section 8.2 How to specify a CLIM
presentation type.

Note that any presentation type with the same name as a Common Lisp type accepts the same parameters

as the Common Lisp type (and additional parameters in a few cases).

8.5.1 Basic presentation types in CLIM

Here are basic presentation types that correspond to the Common Lisp built-in types having the same name.

t [Presentation type]

■ The supertype of all other presentation types. This type a default method for accept that allows

only input via the pointer, and a default method for present that uses write to display the object.

null [Presentation type]

■ The presentation type that represents nothing. The single object associated with this type is nil,

and its printed representation is "None".

boolean [Presentation type]

■ The presentation type that represents t or nil. The textual representation is "Yes" and "No",

respectively.

symbol [Presentation type]

■ The presentation type that represents a symbol. Its accept method reads the name of a symbol,

and its present method displays the symbol's name.

keyword [Presentation type]

■ The presentation type that represents a symbol in the keyword package. It is a subtype of sym-
bol.
116 CLIM 2.2 User Guide

8.5.2 Numeric presentation types in CLIM

The following presentation types represent the Common Lisp numeric types having the same names.

number [Presentation type]

■ The presentation type that represents a general number. It is the supertype of all the number types.

complex [Presentation type]

Arguments: &optional type

■ The presentation type that represents a complex number. It is a subtype of number.

type is the type to be used for each component of the real number. If unspecified, it defaults to real.

real [Presentation type]

Arguments: &optional low high

■ The presentation type that represents either a ratio, an integer, or a floating point number between

low and high. low and high can be inclusive or exclusive; they are specified the same way as in

the Common Lisp type specifiers for real.

■ Options to this type are base (default is 10) and radix (default is nil), which control the value

of *print-base* and *print-radix* when the number is printed (or *read-base* when

the number is read).

rational [Presentation type]

■ The presentation type that represents either a ratio or an integer between low and high. Options

to this type are base and radix, which are the same as for the real type. It is a subtype of real.

ratio [Presentation type]

Arguments: &optional low high

■ The presentation type that represents a ratio between low and high. Options to this type are

base and radix, which are the same as for the integer type. It is a subtype of rational.

integer [Presentation type]

Arguments: &optional low high

■ The presentation type that represents an integer between low and high. Options to this type are

base and radix, which are the same as for the real type. It is a subtype of rational.

float [Presentation type]

Arguments: &optional low high

■ The presentation type that represents a floating point number between low and high. This type is

a subtype of real.

8.5.3 Character and string presentation types in CLIM

These two presentation types can be used for reading and writing character and strings.

character [Presentation type]

■ The presentation type that represents a Common Lisp character object.
CLIM 2.2 User Guide 117

string [Presentation type]

Arguments: &optional length

■ The presentation type that represents a string. If length is supplied, the string must have exactly

that many characters.

8.5.4 Pathname presentation type in CLIM

pathname [Presentation type]

■ The presentation type that represents a pathname.

■ The options are default-type, which defaults to nil, default-version, which defaults

to :newest, and merge-default, which defaults to t. If merge-default is nil, accept
returns the exact pathname that was entered, otherwise accept merges against the default provided

to accept and default-type and default-version, using merge-pathnames. If no

default is supplied, it defaults to *default-pathname-defaults*.

8.5.5 One-of and some-of presentation types in CLIM

The one-of and some-of presentation types can be used to accept and present one or more items from a set

of items. The set of items can be specified as a rest argument, a sequence, or an alist.

This table summarizes single (one-of) and multiple (some-of) selection presentation types. Each row rep-

resents a type of presentation. Columns contain the associated single and multiple selection presentation

types.

completion [Presentation type]

Arguments: sequence &key test value-key

■ The presentation type that selects one from a finite set of possibilities, with completion of partial

inputs. Several types are implemented in terms of the completion type, including token-or-
type, null-or-type, member, member-sequence, and member-alist.

■ The presentation type parameters are:

sequence

A list or vector whose elements are the possibilities. Each possibility has a printed representation

(given by name-key), called its name, and an internal representation (given by value-key),

called its value. accept reads a name and returns a value. present is given a value and outputs

a name.

test

A function that compares two values for equality. The default is eql.

Args Single Multiple

most general clim:completion clim:subset-completion

&rest elements member clim:subset

sequence clim:member-sequence clim:subset-sequence

alist clim:member-alist clim:subset-alist
118 CLIM 2.2 User Guide

value-key

A function that returns a value given an element of sequence. The default is identity.

■ The following presentation type options are available:

name-key

A function that returns a name, as a string, given an element of sequence. The default is a func-

tion that behaves as follows:

documentation-key

A function that returns nil or a descriptive string, given an element of sequence. The default

always returns nil.

partial-completers

A possibly-empty list of characters that delimit portions of a name that can be completed sepa-

rately. The default is a list of one character, Space.

printer

A function of two arguments that is used to display the name of the item. The default is write-
token.

highlighter

A function of three arguments that is used to highlight the currently selected item in a dialog. The

first argument is a continuation function that should be called on the other two arguments, the

object and the stream. The default method for textual dialogs simply displays the currently

selected item in boldface.

member-sequence [Presentation type abbreviation]

Arguments: sequence &key test

■ Like member, except that the set of possibilities is the sequence sequence. The parameter

test and the options are the same as for completion.

member-alist [Presentation type abbreviation]

Arguments: alist &key test

■ Like member, except that the set of possibilities is the alist alist. Each element of alist is

either an atom as in member-sequence or a list whose car is the name of that possibility and

whose cdr is one of the following:

• The value (which must not be a cons)

Argument Returned Value

string the string

null nil

cons string of the car

symbol string-capitalize of its

name

otherwise princ-to-string of it
CLIM 2.2 User Guide 119

• A list of one element, the value

• A property list containing one or more of the following properties:

:value -- the value

:documentation -- a descriptive string

■ The test parameter and the options are the same as for completion except that value-key
and documentation-key default to functions that support the specified alist format.

subset-completion [Presentation type]

Arguments: sequence &key test value-key

■ The presentation type that selects one or more from a finite set of possibilities, with completion

of partial inputs. The parameters and options are the same as for completion with the following

additional options:

separator

The character that separates members of the set of possibilities in the printed representation when

there is more than one. The default is comma.

echo-space

(t or nil) Whether to insert a space automatically after the separator. The default is t.

The other subset types (subset, subset-sequence, and subset-alist) are implemented in

terms of the subset-completion type.

subset [Presentation type abbreviation]

Arguments: &rest elements

■ The presentation type that specifies a subset of elements. Values of this type are lists of zero

or more values chosen from the possibilities in elements. The printed representation is the names

of the elements separated by the separator character. The options are the same as for subset-
completion.

subset-sequence [Presentation type abbreviation]

Arguments: sequence &key test

■ Like subset, except that the set of possibilities is the sequence sequence. The parameter

test and the options are the same as for subset-completion.

subset-alist [Presentation type abbreviation]

Arguments: alist &key test

■ Like subset, except that the set of possibilities is the alist alist. The parameter test and the

options are the same as for subset-completion. The parameter alist has the same format as

member-alist.

8.5.6 Sequence presentation types in CLIM

The following two presentation types can be used to accept and present a sequence of objects.
120 CLIM 2.2 User Guide

sequence [Presentation type]

Arguments: element-type

■ The presentation type that represents a sequence of elements of type element-type. The

printed representation of a sequence type is the elements separated by the separator character. It is

unspecified whether accept returns a list or a vector. You can supply the following options:

separator

The character that separates members of the set of possibilities in the printed representation when

there is more than one. The default is comma, #\,.

echo-space

If this is t, then CLIM will insert a space automatically after the separator, otherwise it will not.

The default is t.

■ element-type can be a presentation type abbreviation.

■ For example, you can read a collection of real numbers by calling accept on the type

(sequence real).

sequence-enumerated [Presentation type]

Arguments: &rest element-types

■ sequence-enumerated is like sequence, except that the type of each element in the

sequence is individually specified. It is unspecified whether accept returns a list or a vector. You

can supply the following options:

separator

The character that separates members of the set of possibilities in the printed representation when

there is more than one. The default is comma, #\,.

echo-space

If this is t, then CLIM will insert a space automatically after the separator, otherwise it will not.

The default is t.

■ The elements of element-types can be presentation type abbreviations.

■ For example, you might read a 2-dimensional coordinate by calling accept on the type

(sequence-enumerated real real).

8.5.7 Meta presentation types in CLIM

CLIM provides the or and and presentation types in order to combine presentation types.

or [Presentation type]

Arguments: &rest types

■ The presentation type that is used to specify one of several types, for example, (or (member
:all :none) integer). accept returns one of the possible types as its second value, not the

original or presentation type specifier.

The elements of types can be presentation type abbreviations.

and [Presentation type]

Arguments: &rest types

■ The presentation type that is used for multiple inheritance. and is usually used in conjunction

with satisfies. For example,
CLIM 2.2 User Guide 121

(and integer (satisfies oddp))

■ The elements of types can be presentation type abbreviations.

Note that the first type in types is in charge of accepting and presenting. The remaining ele-

ments of types are used for type checking (for example, filtering applicability of presentation trans-

lators).

■ The and type has special syntax that supports the two predicates, satisfies and not. sat-
isfies and not cannot stand alone as presentation types and cannot be first in types. not can

surround either satisfies or a presentation type.

8.5.8 Compound presentation types in CLIM

The following compound presentation types are provided because they implement some common idioms.

token-or-type [Presentation type abbreviation]

Arguments: tokens type

■ A compound type that is used to select one of a set of special tokens, or an object of type type.

tokens is anything that can be used as the alist parameter to member-alist; typically it is a

list of keyword symbols.

type can be a presentation type abbreviation.

null-or-type [Presentation type abbreviation]

Arguments: type

■ A compound type that is used to select nil, whose printed representation is the special token

"None", or an object of type type.

type can be a presentation type abbreviation.

type-or-string [Presentation type abbreviation]

Arguments: type

■ A compound type that is used to select an object of type type or an arbitrary string, for example,

(type-or-string integer). Any input that accept cannot parse as the representation of

an object of type type is returned as a string.

type can be a presentation type abbreviation.

8.5.9 Lisp form presentation types in CLIM

The Lisp form presentation types are complex types provided primarily for use by the top level interactor

of an application. There are also presentation types defined for commands, which are discussed in section

10.7 Command-related presentation types.

expression [Presentation type]

■ The presentation type used to represent any Lisp object. The textual view of this type looks like

what the standard prin1 and read functions produce and accept.

This type has one option, auto-activate, which controls whether the expression terminates

on a delimiter gestures, or when the Lisp expression balances (for example, you type enough right

parentheses to complete the expression). The default for auto-activate is nil.
122 CLIM 2.2 User Guide

form [Presentation type]

■ The presentation type used to represent a Lisp form. This type is a subtype of expression. It

also has an auto-activate option.

8.6 Defining a new presentation type in CLIM

In many cases, CLIM's built-in presentation types are not sufficient for your applications. This section

describes how to define a new presentation type and the methods for that type.

8.6.1 Concepts of defining a new presentation type in CLIM

CLIM's standard set of presentation types will be useful in many cases, but most applications will need cus-

tomized presentation types to represent the objects modeled in the application.

By defining a presentation type, you define all of the user interface components of the entity:

• A displayed representation, for example, textual or graphical

• An optional textual representation, for user input via the keyboard (this is required if the

application uses command-line input for this type)

• Pointer sensitivity, for user input via the pointer

In other words, by defining a presentation type, you describe in one place all the information about an

object necessary to display it to the user and interact with the user for getting input.

The set of presentation types forms a type lattice, an extension of the Common Lisp CLOS type lattice.

When a new presentation type is defined as a subtype of another presentation type, it inherits all the

attributes of the supertype except those explicitly overridden in the definition.

To define a new presentation type, you follow these steps:

1. Use the define-presentation-type macro.

• Name the new presentation type.

• Supply parameters that further restrict the type (if appropriate).

• Supply options that affect the appearance of the type (if appropriate).

• State the supertypes of this type, to make use of inheritance (if appropriate).

2. Define CLIM presentation methods.

• Specify how objects are displayed with a present presentation method. (You must define a

present method, unless the new presentation type inherits a method that is appropriate for it.)

• Specify how objects are parsed with a accept presentation method. (In most cases, you must

define a accept method, unless the new presentation type inherits a method that is appropriate

for it. If it is never necessary to enter the object by typing its representation on the keyboard, you

don't need to provide this method.)

• Specify the type/subtype relationships of this type and its related types, if necessary, with

presentation-typep and presentation-subtypep presentation methods. (You

must define or inherit these methods if either the presentation type is not a CLOS class, or the

type has parameters.)
CLIM 2.2 User Guide 123

8.6.2 CLIM presentation type Inheritance

Every presentation type is associated with a CLOS class. In the common case, the name of the presentation

type is a class object or the name of a class, and that class is not a built-in-class. In this case, the

presentation type is associated with that CLOS class.

Otherwise, define-presentation-type defines a class with metaclass presentation-
type-class and superclasses determined by the presentation type definition. This class is not named

name, since that could interfere with built-in Common Lisp types such as and, member, and integer.

class-name of this class returns a list (presentation-type name). presentation-type-
class is a subclass of standard-class.

Note: If the same name is defined with both defclass (or defstruct) and define-
presentation-type, the defclass (or defstruct) must be evaluated first.

Every CLOS class (except for built-in classes) is a presentation type, as is its name. If it has not been

defined with define-presentation-type, it allows no parameters and no options. As in CLOS,

inheriting from a built-in class does not work, unless you specify the same inheritance that the built-in class

already has; you may want to do this in order to add presentation type parameters to a built-in class.

If you define a presentation type that does not have the same name as a CLOS class, you must define a

presentation-typep presentation method for it. If you define a presentation type that has parameters,

you must define a presentation-subtypep for it.

If your presentation type has the same name as a class, doesn't have any parameters or options, doesn't

have a history, and doesn't need a special description, you do not need to call define-presentation-
type.

During method combination, presentation type inheritance is used both to inherit methods (‘what parser

should be used for this type?’), and to establish the semantics for the type (‘what objects are sensitive in

this context?’). Inheritance of methods is the same as in CLOS and thus depends only on the type name, not

on the parameters and options.

Presentation type inheritance translates the parameters of the subtype into a new set of parameters for the

supertype, and translates the options of the subtype into a new set of options for the supertype.

8.6.3 Examples of defining a new CLIM presentation type

This section has some examples of defining new presentation type. The first subsection contains a lengthy

example which works through the details of part of a small application. The second subsection contains

other, miscellaneous examples that cover some more advanced topics.

8.6.4 Example of modelling courses at a university

This example shows how to define a new presentation type, and how to define the presentation methods for

the new type. First we define the application objects themselves and create some test data. Then we define

a simple presentation type, and gradually add enhancements to it to show different CLIM techniques.

This example models a university. The application objects are students, courses, and departments. This

is such a simple example that there is no need to use inheritance.

Note that this example must be run in a package, such as clim-user, that has access to symbols from

the clim and clos packages.
124 CLIM 2.2 User Guide

These are the definitions of the application objects:

(defclass student ()
 ((name :reader student-name :initarg :name)
 (courses :accessor student-courses :initform nil)))

(defclass course ()
 ((name :reader course-title :initarg :title)
 (department :reader course-department :initarg :department)))

(defclass department ()
 ((name :reader department-name :initarg :name)))

The following code provides support for looking up objects by name.

(defvar *student-table* (make-hash-table :test #’equal))
(defvar *course-table* (make-hash-table :test #’equal))
(defvar *department-table* (make-hash-table :test #’equal))
(defun find-student (name &optional (errorp t))
 (or (gethash name *student-table*)
 (and errorp (error "There is no student named ~S" name))))
(defun find-course (name &optional (errorp t))
 (or (gethash name *course-table*)
 (and errorp (error "There is no course named ~S" name))))

(defun find-department (name &optional (errorp t))
 (or (gethash name *department-table*)
 (and errorp (error "There is no department named ~S" name))))

(defmethod initialize-instance :after ((student student) &key)
 (setf (gethash (student-name student) *student-table*) student))

(defmethod initialize-instance :after ((course course) &key)
 (setf (gethash (course-title course) *course-table*) course))

(defmethod initialize-instance :after ((department department) &key)
 (setf (gethash (department-name department) *department-table*) department))

(defmethod print-object ((student student) stream)
 (print-unreadable-object (student stream :type t)
 (write-string (student-name student) stream)))

(defmethod print-object ((course course) stream)
 (print-unreadable-object (course stream :type t)
 (write-string (course-title course) stream))
 (format stream " (~A)" (department-name (course-department course))))

(defmethod print-object ((department department) stream)
 (print-unreadable-object (department stream :type t)
 (write-string (department-name department) stream)))

Here we create some test data:

(flet ((make-student (name &rest courses)
 (setf (student-courses (make-instance 'student :name name))
CLIM 2.2 User Guide 125

 (copy-list courses)))
 (make-course (title department)
 (make-instance ’course :title title :department department))
 (make-department (name)
 (make-instance ’department :name name)))
 (let* ((english (make-department "English"))
 (physics (make-department "Physics"))
 (agriculture (make-department "Agriculture"))
 (englit (make-course "English Literature" english))
 (mabinogion (make-course "Deconstructing the Mabinogion" english))
 (e+m (make-course "Electricity and Magnetism II" physics))
 (beans (make-course "The Cultivation and Uses of Beans" agriculture))
 (horses (make-course "Horse Breeding for Track and Field" agriculture))
 (corn (make-course "Introduction to Hybrid Corn" agriculture)))
 (make-student "Susan Charnas" englit e+m)
 (make-student "Orson Card" englit beans)
 (make-student "Roberta MacAvoy" horses mabinogion)
 (make-student "Philip Farmer" corn beans horses)))

You can evaluate the following forms to test what you have done so far. A printed representation of each

object will be displayed.

(find-student "Philip Farmer")
→ #<STUDENT Philip Farmer>
 (find-course "The Cultivation and Uses of Beans")
→ #<COURSE The Cultivation and Uses of Beans (Agriculture)>
(find-department "Agriculture")
→ #<DEPARTMENT Agriculture

If you try to evaluate a form that has not yet been defined (for example, if you try to look up a student

that doesn't exist), you might see something like this:

CLIM-USER(12): (find-student "Jill Parker")
Error: There is no student named "Jill Parker"
CLIM-USER(13):

Now we are ready to develop a user interface. This first example defines presentations of students, rep-

resented by their names. This simple presentation type does not provide parameters or options. A real pro-

gram would also provide presentation types for courses and departments, but this example shows students

only.

(clim:define-presentation-type student ())
(clim:define-presentation-method clim:present
 (student (type student) stream
 (view clim:textual-view) &key)
 (write-string (student-name student) stream))
(clim:define-presentation-method clim:accept
 ((type student) stream
 (view clim:textual-view) &key)
 (let* ((token (clim:read-token stream))
 (student (find-student token nil)))
 (when student
 (return-from clim:accept student))
 (clim:input-not-of-required-type token type)))
126 CLIM 2.2 User Guide

Test this by evaluating the following forms in a CLIM Lisp Listener (which is part of the CLIM Demos

system). Note that there is no completion and find-student is case-sensitive, so the student's name must

be entered exactly to be accepted.

(clim:describe-presentation-type ’student t)
(clim:describe-presentation-type ’student t 5)
(clim:present (find-student "Philip Farmer") ’student)
(clim:accept ’student :default (find-student "Philip Farmer"))

We can improve the input interface by using completion over elements of *student-table*.

(clim:define-presentation-method clim:accept
 ((type student) stream
 (view textual-view) &key)
 (values ;suppress values after the first
 (clim:completing-from-suggestions
 (stream :partial-completers ’(#\Space))
 ;; SUGGEST takes arg of name, object
 (maphash #’clim:suggest *student-table*))))

Test this by evaluating the following form in a CLIM Lisp Listener. (Use the CLIM Lisp Listener demo

for this purpose.)

(clim:accept ’student :default (find-student "Philip Farmer"))

Try the Control-? key, and try entering just the initials of a student, separated by a space; they complete

to the full name.

It would be useful to be able to select students in a particular department. We can revise the presentation

type for student by adding a parameter for the department. A student is in a department if the student is

taking any course in that department.

(defun student-in-department-p (student department)
 (find department (student-courses student) :key #’course-department))
(clim:define-presentation-type student (&optional department))

When a presentation type has parameters, the defaults for the presentation-typep and

presentation-subtypep presentation methods are not sufficient. Therefore, we need to define these

presentation methods. We also define a new describe-presentation-type method.

(clim:define-presentation-method clim:presentation-typep
 (object (type student))
 (or (eq department ’*)
 (student-in-department-p object department)))

(clim:define-presentation-method clim:presentation-subtypep
 ((type1 student) type2)
 (let ((department1 (clim:with-presentation-type-parameters
 (student type1) department))
 (department2 (clim:with-presentation-type-parameters
 (student type2) department)))
 (values (or (eq department1 department2)
 (eq department2 ’*))
 t)))

(clim:define-presentation-method clim:describe-presentation-type
CLIM 2.2 User Guide 127

 ((type student) stream plural-count)
 (when (eql plural-count 1)
 (write-string (if (or (eq department ’*)
 (not (find (char (department-name department) 0) "aeiou"
 :test #’char-equal)))
 "a "
 "an ")
 stream))
 (format stream
 (if (and (integerp plural-count) (\> plural-count 1))
 (if (eq department ’*) "~R student~:P" "~R ~A student~:*~:P")
 (if (eq department ’*) "student~P" "~*~A student~:*~:P"))
 (typecase plural-count
 (integer plural-count)
 (null 1)
 (otherwise 2))
 (unless (eq department ’*)
 (department-name department))))

Evaluate the following forms to test these methods:

(clim:presentation-typep (find-student "Philip Farmer")
 ‘(student ,(find-department "Agriculture")))

(clim:presentation-typep (find-student "Philip Farmer")
 ‘(student ,(find-department "English")))

(clim:presentation-typep "Philip Farmer"
 ‘(student ,(find-department "Agriculture")))

(clim:presentation-subtypep ‘(student ,(find-department "Agriculture"))
 ‘(student *))

(clim:presentation-subtypep ‘(student ,(find-department "Agriculture"))
 ‘(student ,(find-department "English")))

(clim:describe-presentation-type ‘(student ,(find-department "Physics")))

(clim:describe-presentation-type ‘(student *))

The existing method for accept suggests all the students, even the ones in the wrong department, so

we provide the following :aroundmethod to check that we are returning a student in the right department.

(clim:define-presentation-method clim:accept :around
 ((type student) stream view &key)
 (declare (ignore stream view))
 (multiple-value-bind (object actual-type)
 (call-next-method)
 (unless (clim:presentation-typep object type)
 (clim:input-not-of-required-type object type))
 (values object actual-type)))

Evaluate the following form in a CLIM Listener before and after defining the above method.

(clim:accept ‘(student ,(find-department "Agriculture")))
128 CLIM 2.2 User Guide

Type the following at the prompt:

susan RETURN

Before defining the above method, accept returns a student that is not in the specified department. After

defining the above method, CLIM asks the user to try again. But if you press Control-?, Susan Charnas is

still listed as one of the possibilities.

Another way to do this would be to filter out students in other departments before calling suggest. To

do that, define this method instead of the preceding method. This way works better because the completion

possibilities won’t include any extra students.

(clim:define-presentation-method clim:accept
 ((type student) stream
 (view clim:textual-view) &key)
 (values ;suppress values after the first
 (clim:completing-from-suggestions
 (stream :partial-completers ’(#\Space))
 (maphash (if (eq department ’*)
 #’clim:suggest
 #’(lambda (name student)
 (when (student-in-department-p student department)
 (clim:suggest name student))))
 student-table))))

(fmakunbound ’(method clim:accept-method :around (student t t t t t)))

Evaluate these forms in the CLIM Listener again. Try entering the names of agricultural and non-agricul-

tural students.

(clim:accept ‘(student ,(find-department "Agriculture")))
(clim:accept ‘student)

You can also try the Control-? key.

It is easy to define an abbreviation for a presentation type. Here we define aggie as an abbreviation for

a student in the Agriculture department:

(clim:define-presentation-type-abbreviation aggie ()
 ‘(student ,(find-department "Agriculture")))

Evaluate these forms to test it.

(clim:describe-presentation-type ’aggie)
(clim:accept ’aggie)

Now we refine our example by providing an option that controls the printing of the student’s name.

(clim:define-presentation-type student (&optional department)
 :options (last-name-first))
(clim:define-presentation-method clim:present
 (student (type student) stream
 (view clim:textual-view) &key)
 (let* ((name (student-name student))
 (index (and last-name-first (position #\Space name :from-end t))))
 (cond ((null index)
 (write-string name stream))
CLIM 2.2 User Guide 129

 (t
 (write-string name stream :start (1+ index))
 (write-string ", " stream)
 (write-string name stream :end index)))))

(clim:define-presentation-method clim:accept
 ((type student) stream
 (view clim:textual-view) &key)
 (values ;suppress values after the first
 (clim:completing-from-suggestions
 (stream :partial-completers ’(#\Space #‚))
 (maphash #’(lambda (name student)
 (when (clim:presentation-typep student type)
 (clim:suggest
 (or (and last-name-first
 (let ((index (position #\Space name
 :from-end t)))
 (and index
 (concatenate ’string
 (subseq name (1+ index))
 ", "
 (subseq name 0 index)))))
 name)
 student)))
 student-table))))

Evaluate these forms to test it.

(clim:present (find-student "Philip Farmer") ’student)
(clim:present (find-student "Philip Farmer") ’((student) :last-name-first t))
(clim:accept ‘((student) :last-name-first t))
(clim:accept ‘((student ,(find-department "Physics")) :last-name-first t))

Since presentation type options are not automatically inherited by subtypes and abbreviations, the fol-

lowing example doesn’t work.

(clim:accept ’((aggie) :last-name-first t))

This example works if you redefine aggie to accept the :last-name-first option:

(clim:define-presentation-type-abbreviation aggie ()
 ‘((student ,(find-department "Agriculture"))
 :last-name-first ,last-name-first)
 :options (last-name-first))

Note that you can override the presentation type’s description:

(clim:accept ‘((student ,(find-department "English"))
 :description "English major"))
130 CLIM 2.2 User Guide

8.6.5 Examples of more complex presentation types

Here is an example of a complex presentation type that consists of one field optionally followed by another.

You should pay particular attention to the used of with-delimiter-gestures, and the way this type

reads the delimiter gesture out of the buffer. This example can be used as the basis for many presentation

types that read multiple fields.

;; In a real application, this would probably be something else...
(defvar *printer-name-alist*
 ‘(("Laserwriter" laserwriter)
 ("Lautscribner" lautscribner)))

(defvar *destination-type-alist*
 ‘((:window :value (:window nil nil nil))
 (:pathname :value (:pathname pathname "pathname" "Enter a pathname"))
 (:printer :value (:printer (clim:member-alist ,*printer-name-alist*)
 "printer" "Enter the name of a printer"))))

;; OUTPUT-DESTINATION is a presentation type whose printed representation
;; consists of the type of output destination (Window, File, Printer)
;; followed by another argument (a pathname or printer name). The two
;; fields are separated by a space.
(clim:define-presentation-type output-destination ())

(clim:define-presentation-method clim:accept
 ((type output-destination) stream (view clim:textual-view) &key)
 ;; Since #\Space separates the fields, make it a delimiter gesture
 ;; so that the calls to ACCEPT will terminate when the user types
 ;; a space character.
 (clim:with-delimiter-gestures (#\Space)
 (let (dtype place delimiter)
 ;; Read the destination type using ACCEPT. Establish a "help"
 ;; context to prompt the user to enter a destination type.
 (clim:with-accept-help
 ((:subhelp #’(lambda (stream action string)
 (declare (ignore action string))
 (write-string "Enter the destination type." stream))))
 (setq dtype (clim:accept ‘(clim:member-alist ,*destination-type-alist*)
 :stream stream :view view :prompt "type")))
 (destructuring-bind (dtype type prompt help) dtype
 (when (eql type nil)
 (return-from clim:accept (list dtype nil)))
 ;; Read the delimiter -- it should be a space, but if it is not,
 ;; signal a parse-error.
 (setq delimiter (clim:stream-peek-char stream))
 (cond ((char-equal delimiter #\Space)
 ;; The delimiter was a space, so remove it from the input
 ;; buffer and read the next integer.
 (clim:stream-read-char stream)
 (clim:with-accept-help
 ((:subhelp #’(lambda (stream action string)
 (declare (ignore action string))
 (write-string help stream))))
CLIM 2.2 User Guide 131

 (setq place (clim:accept type
 :stream stream :view view :prompt prompt))))
 (t (simple-parse-error "Invalid delimiter: ~S" delimiter)))
 ;; Return the result, leaving the final delimiter in place.
 (list dtype place)))))

(define-presentation-method clim:present
 (object (type output-destination) stream (view clim:textual-view) &key)
 ;; Just print the two parts of the object separated by a space.
 (destructuring-bind (dtype place) object
 (if place
 (format stream "~:(~A~) ~A" dtype place)
 (format stream "~:(~A~)" dtype))))

;; Only lists whose two elements are right
(define-presentation-method clim:presentation-typep (object (type output-
destination))
 (and (listp object)
 (= (length object) 2)
 (not (null (assoc (first object) *destination-type-alist*)))))

8.6.6 CLIM operators for defining new presentation types

This section describes the forms used for defining a new presentation type and its methods.

define-presentation-type [Macro]

Arguments: name parameters &key options inherit-from description
history parameters-are-types

■ Defines a CLIM presentation type. The arguments are as follows:

name

The name of the presentation type. name must be a symbol or a CLOS class object.

parameters

Parameters of the presentation type. These parameters are lexically visible within inherit-
from and within the methods created with define-presentation-method. For example,

the parameters are used by presentation-typep to refine its tests for type inclusion.

parameters are specified the same way as they are for deftype.

options

A list of option specifiers, which defaults to nil. An option specifier is either a symbol or a list

of the form (symbol &optional default supplied-p presentation-type
accept-options).

symbol, default, and supplied-p are as in a normal lambda-list. If presentation-
type and accept-options are present, they specify how to accept a new value for this option

from the user. symbol can also be specified in the (keyword variable) form allowed for

Common Lisp lambda lists. symbol is a variable that is visible within inherit-from and

within most of the methods created with define-presentation-method. The keyword

corresponding to symbol can be used as an option in the third form of a presentation type spec-

ifier. An option specifier for the standard option description is automatically added to

options if an option with that keyword is not present.
132 CLIM 2.2 User Guide

inherit-from

A form that evaluates to a presentation type specifier for another type from which the new type

inherits. inherit-from can access the parameter variables bound by the parameters
lambda list and the option variables specified by options. If name is or names a CLOS class,

then inherit-from must specify the class's direct superclasses (using and to specify multiple

inheritance). It is useful to do this when you want to parameterize previously defined CLOS

classes.

If inherit-from is unsupplied, it defaults as follows: if name is or names a CLOS class, then

the type inherits from the presentation type corresponding to the direct superclasses of that CLOS

class (using and to specify multiple inheritance). Otherwise, the type inherits from standard-
object.

Note: you cannot use define-presentation-type to create a new subclass any of the

built-in types, such as integer or symbol.

history

Specifies what history to use for the presentation type. A presentation type's history is what

accept uses to generate a default when none is supplied. history can be one of the following:

nil

(the default) Uses no history.

t

Uses its own history.

type-name

Uses type-name's history.

If you want more flexibility, you can define a presentation-type-history presentation

method.

description

A string or nil. If nil or unsupplied, a description is automatically generated; it will be a pret-

tied up version of the type name. For example, small-integerwould become "small integer".

You can also write a describe-presentation-type presentation method.

parameters-are-types

If all of the parameters to the presentation type are themselves types (as is the case for and and

or), you should supply :parameters-are-types t.

■ Unsupplied optional or keyword parameters default to * (as in deftype) if no default is sup-

plied in parameters. Unsupplied options default to nil if no default is supplied in options.

■ There are certain restrictions on the inherit-from form, to allow it to be analyzed at compile

time. The form must be a simple substitution of parameters and options into positions in a fixed

framework. It cannot involve conditionals or computations that depend on valid values for the param-

eters or options; for example, it cannot require parameter values to be numbers. It cannot depend on

the dynamic or lexical environment. The form will be evaluated at compile time with uninterned sym-

bols used as dummy values for the parameters and options. In the type specifier produced by evalu-

ating the form, the type name must be a constant that names a type, the type parameters cannot derive

from options of the type being defined, and the type options cannot derive from parameters of the type

being defined. All presentation types mentioned must be already defined. and can be used for mul-

tiple inheritance, but or, not, and satisfies cannot be used.
CLIM 2.2 User Guide 133

define-presentation-method [Macro]

Arguments: presentation-function-name qualifiers* specialized-lambda-
list &body body

■ Defines a presentation method for the function named name on the presentation type named in

specialized-lambda-list.

specialized-lambda-list is a CLOS specialized lambda list for the method, and its

contents varies depending on what name is. qualifier* is zero or more of the usual CLOS

method qualifiers. body defines the body of the method.

None of the arguments is evaluated.

8.6.7 Defining new presentation methods

Under rare circumstances, you may wish to define or call a new presentation generic function. The follow-

ing forms may be used to accomplish this.

define-presentation-generic-function [Macro]

Arguments: generic-function-name presentation-function-name
lambda-list &rest options

■ Defines a new presentation named presentation-function-name whose methods are

named by generic-function-name. lambda-list and options are as in defgeneric.

■ The first few arguments in lambda-list are treated specially. The first argument must be

either type-key or type-class. If you wish to be able to access type parameters or options in

the method, the next arguments must be either or both of parameters and options. Finally, a

required argument called type must also be included in lambda-list.

■ For example, describe-presentation-type might be have been defined by the follow-

ing:

(clim:define-presentation-generic-function
 describe-presentation-type-method clim:describe-presentation-type
 (type-key parameters options type stream plural-count))

■ None of the arguments is evaluated.

define-default-presentation-method [Macro]

Arguments: presentation-function-name qualifiers* specialized-lambda-
list &body body

■ This is like define-presentation-method, except that it is used to define a default

method that will be used if there are no more specific methods.

■ None of the arguments is evaluated.

funcall-presentation-generic-function [Macro]

Arguments: presentation-function-name &rest arguments

■ Funcalls the presentation generic function presentation-function-name with argu-

ments arguments, using funcall.

■ The presentation-function-name arguments is not evaluated.
134 CLIM 2.2 User Guide

apply-presentation-generic-function [Macro]

Arguments: presentation-function-name &rest arguments

■ Applies the presentation generic function presentation-function-name to arguments

arguments, using apply.

■ The presentation-function-name arguments is not evaluated.

8.6.8 CLIM operators for defining presentation type abbreviations

You can define an abbreviation for a presentation type for the purpose of naming a commonly used cliche.

The abbreviation is simply another name for a presentation type specifier. You cannot define presentation

methods on presentation type abbreviations.

define-presentation-type-abbreviation [Macro]

Arguments: name parameters expansion &key options

■ Defines a presentation type that is an abbreviation for the presentation type specifier that is the

value of expansion. Note that you cannot define any presentation methods on a presentation type

abbreviation. If you need to define methods, use define-presentation-type instead.

namemust be a symbol and must not be the name of a CLOS class. parameter, and options
are the same as in define-presentation-type.

The type specifier produced by evaluating expansion can be a real presentation type or another

abbreviation.

■ This example defines a presentation type to read an octal integer:

(clim:define-presentation-type-abbreviation octal-integer (&optional low high)
 ‘((integer ,low ,high) :base 8 :description "octal integer"))

When writing presentation type abbreviations, it is sometimes useful to let CLIM include or exclude

defaults for parameters and options. In some cases, you may also find it necessary to expand a presentation

type abbreviation. The following three functions are useful in these circumstances.

expand-presentation-type-abbreviation [Function]

Arguments: type &optional environment

■ expand-presentation-type-abbreviation is like expand-presentation-
type-abbreviation-1, except that type is repeatedly expanded until all presentation type

abbreviations have been removed.

expand-presentation-type-abbreviation-1 [Function]

Arguments: type &optional environment

■ If the presentation type specifier type is a presentation type abbreviation, or is an and, or,

sequence, or sequence-enumerated that contains a presentation type abbreviation, then

expand-presentation-type-abbreviation-1 expands the type abbreviation once, and

returns two values, the expansion and t. If type is not a presentation type abbreviation, then the val-

ues type and nil are returned.
CLIM 2.2 User Guide 135

make-presentation-type-specifier [Function]

Arguments: type-name-and-parameters &rest options

■ Given a presentation type name and its parameters type-name-and-parameters and some

presentation type options, make a new presentation type specifier that includes all of the type param-

eters and options. This is useful for assembling a presentation type specifier with options equal to

their default values omitted. This is only useful for define-presentation-type-
abbreviation, but not for the inherit-from clause of define-presentation-type.

■ For example,

(clim:make-presentation-type-specifier '(integer 1 10) :base 10)

→ (integer 1 10)

(clim:make-presentation-type-specifier '(integer 1 10) :base 8)

→ ((integer 1 10) :base 8)

8.6.9 More about presentation methods in CLIM

All presentation methods have an argument named type that must be specialized with the name of a pre-

sentation type. The value of type is a presentation type specifier, which can be for a subtype that inherited

the method.

All presentation methods except those for presentation-subtypep have lexical access to the

parameters from the presentation type specifier. Presentation methods for the following operators also have

lexical access to the options from the presentation type specifier.

accept

present

describe-presentation-type

presentation-type-specifier-p

accept-present-default

Presentation methods inherit and combine in the same way as ordinary CLOS methods. The reason pre-

sentation methods are not exactly the same as ordinary CLOS methods revolves around the type argument.

The parameter specializer for type is handled in a special way and presentation method inheritance

arranges the type parameters and options seen by each method.

Here are the names of the various presentation methods defined by define-presentation-
method, along with the lambda-list for each method.

present [Presentation method]

Arguments: object &optional type stream view &key acceptably
for-context-type

■ This presentation method is responsible for displaying the representation of object having type

type for a particular view view. The method's caller takes care of creating the presentation, so the

method need only display the contents of the presentation.

The method must specify &key, but need only receive the keyword arguments that it is interested

in. The remaining keyword arguments will be ignored automatically since the generic function spec-

ifies &allow-other-keys.
136 CLIM 2.2 User Guide

The present method can specialize on the view argument in order to define more than one

view of the data. For example, a spreadsheet program might define a presentation type for revenue,

which can be displayed either as a number or a bar of a certain length in a bar graph. Typically, at

least one canonical view should be defined for a presentation type; for example, a present method

specializing on the class textual-view should be defined if you want to allow the type to be dis-

played textually.

Note that CLIM captures the presentation type for its own use, and you should not modify it once

you have handed it to CLIM.

Note that, for a particular view, the present and accept methods must be duals, that is, the

accept method must be able to parse what the present prints.

accept [Presentation method]

Arguments: type stream view &key default default-type

■ This presentation method is responsible for parsing the representation of type for a particular

view view on the stream stream. The acceptmethod should return a single value, the object that

was parsed, or two values, the object and its type (a presentation type specifier). The method's caller

takes care of establishing the input context, defaulting, prompting, and input editing.

default and default-type are as in accept.

The method must specify &key, but need only receive the keyword arguments that it is interested

in. The remaining keyword arguments will be ignored automatically since the generic function spec-

ifies &allow-other-keys.

The acceptmethod can specialize on the view argument in order to define more than one input

view for the data. In particular, the acceptmethod specializing on the class textual-viewmust

be defined if the programmer wants to allow the type to be used via the keyboard.

accept presentation methods can also call accept recursively. Such methods should be care-

ful to call accept with nil for prompt and display-default unless prompting is really

desired.

Note that, for a particular view, the present and accept methods must be duals, that is, the

accept method must be able to parse what the present prints.

describe-presentation-type [Presentation method]

Arguments: type stream plural-count

■ This presentation method is responsible for textually describing the type type. stream will be

a stream of some sort, never nil. plural-count is as in the describe-presentation-
type function.

■ You will rarely need to define a method for this, since the :description option to define-
presentation-type is usually sufficient.

default-describe-presentation-type [Function]

Arguments: description stream plural-count

■ Given a string description that describes a presentation type (such as "integer") and

plural-count (either nil or an integer), this function pluralizes the string if necessary, prepends

an indefinite article if appropriate, and outputs the result onto stream.

■ This function is useful when you are writing your own describe-presentation-type
method, but want to get most of CLIM's default behavior.
CLIM 2.2 User Guide 137

presentation-typep [Presentation method]

Arguments: object type

■ This presentation method is called when the presentation-typep function requires type-

specific knowledge. If the type name in type is or names a CLOS class, the method is called only

if object is a member of the class and type contains parameters, and the method simply tests

whether object is a member of the subtype specified by the parameters. For non-class types, the

method is always called.

■ You must define a presentation-typep method if the presentation type does not have the

same name as a CLOS class.

presentation-subtypep [Presentation method]

Arguments: type putative-supertype

■ This presentation method is called when the presentation-subtypep function requires

type-specific knowledge.

The function presentation-subtypep walks the type lattice to determine that type is a

subtype of putative-supertype, without looking at the type parameters. When a supertype of

type has been found whose name is the same as the name of putative-supertype, then the

presentation-subtypep method for that type is called in order to resolve the question by

looking at the type parameters (that is, if the presentation-subtypepmethod is called, type
and putative-supertype are guaranteed to be the same type, differing only in their parame-

ters).

Unlike all other presentation methods, presentation-subtypep receives a type argu-

ment that has been translated to the presentation type for which the method is specialized; type is

never a subtype. The method is only called if putative-supertype has parameters and the two

presentation type specifiers do not have equal parameters.

presentation-subtypep returns two values, subtypep and known-p. subtypep can

be t (meaning that type is definitely a subtype of putative-supertype) or nil (meaning that

type is definitely not a subtype of putative-supertype when known-p is t, or that the

answer cannot be determined if known-p is nil).

Since presentation-subtypep takes two arguments that are presentation types, the

parameters are not lexically available as variables in the body of a presentation method. Use with-
presentation-type-parameters if you want to access the parameters of the presentation

types.

You must define a presentation-subtypep method if the presentation type has parame-

ters.

accept-present-default [Presentation method]

Arguments: type stream view default default-supplied-p present-p
query-identifier &key prompt active-p

■ This presentation method is called when accept turns into present inside of accepting-
values. The default method calls present or describe-presentation-type depending

on whether default-supplied-p is t or nil.

type, stream, view, default, and query-identifier are as for accept.

default-supplied-p is t if and only if default was explicitly supplied to the call to

accept.

■ You only need to define a method for accept-present-default when you wish to create

interesting dialog behavior for the type.
138 CLIM 2.2 User Guide

presentation-refined-position-test [Presentation method]

Arguments: record type x y

■ This method used to definitively answer hit detection queries for a presentation, that is, determin-

ing that the point (x,y) is contained within the output record record. Its contract is exactly the same

as for output-record-refined-position-test, except that it is intended to specialize on

the presentation type type.

■ It is useful to define a presentation-refined-position-test method when the dis-

played output records that represent the presentation do not themselves implement the desired hit

detection behavior. In practice, this comes up only rarely, since using the :single-box option to

present and with-output-as-presentation will often produce the desired behavior.

highlight-presentation [Presentation method]

Arguments: record type stream state

■ This method is responsible for drawing a highlighting box around the presentation record on

the output recording stream stream. state will be either :highlight or :unhighlight,

meaning that the highlighting box should either be drawn or erased.

■ It is useful to define a highlight-presentation method when you wish to have special

highlighting behavior, such as inverse video, for a presentation type.

presentation-type-specifier-p [Presentation method]

Arguments: type

■ The presentation-type-specifier-p method is responsible for checking the validity

of the parameters and options for type. The default method returns t.

■ You will almost never need to define a presentation-type-specifier-p method.

8.6.10 Utilities for clim:accept presentation methods

The utilities documented in this section are typically useful with accept (and sometimes present) pre-

sentation methods.

The following two functions are used to read or write a token (that is, a string):

read-token [Function]

Arguments: stream &key input-wait-handler pointer-button-press-handler
click-only

■ Reads characters from stream until it encounters an activation gesture, a delimiter gesture, or a

pointer button event. All printing Standard Characters are acceptable (see CLtL p. 336, or CLtL2 p.

512). read-token returns the accumulated string that was delimited by an activation or delimiter

gesture, leaving the delimiter unread, that is, still in the stream's input buffer.

input-wait-handler

Passed along to read-gesture. The default is a function that supports highlighting for with-
input-context. You will rarely need to supply this.

pointer-button-press-handler

Passed along to read-gesture. The default is a function that supports presentation translators

for with-input-context. You will rarely need to supply this.

click-only

If true, only pointer gestures are expected and anything else will result in a beep. The default is

nil.
CLIM 2.2 User Guide 139

■ It is preferable to use read-token instead of read-string inside of accept methods.

write-token [Function]

Arguments: token stream &key acceptably

■ write-token is the opposite of read-token: given the string token, it writes it to the

stream stream.

If acceptably is t and there are any characters in token that are delimiter gestures (see the

macro with-delimiter-gestures), then write-token will surround the token with quo-

tation marks, #\".

It is advisable to use write-token instead of write-string inside of presentmethods.

Sometimes, an accept method may wish to signal an error while it is parsing the user's input, or a

nested call to acceptmay signal such an error itself. The following functions and conditions may be used:

simple-parse-error [Condition]

■ This condition is signaled when CLIM does not know how to parse some sort of user input while

inside of accept. It is built on parse-error.

simple-parse-error [Function]

Arguments: format-string &rest format-arguments

■ Signals an error of type simple-parse-error. This can be called while parsing an input

token, for example, by a method on accept. This function does not return.

input-not-of-required-type [Condition]

■ This condition is signaled when CLIM gets input that does not satisfy the specified type while

inside of accept. It is built on parse-error.

input-not-of-required-type [Function]

Arguments: object type

■ Reports that input does not satisfy the specified type. object is a parsed object or an unparsed

token (a string). type is a presentation type specifier. This function does not return.

Some accept methods will want to allow for the completion of partial input strings by the user. The

following functions are useful for doing that. Please note that these functions return multiple values that are

not appropriate for the accept presentation method to return (it should return one or two values, the object

or the object and the presentation type, as described in section 8.6.9 above). Therefore, the following code

is wrong and will cause errors which are hard to diagnose:

(define-presentation-method accept
 ((type my-tupe) stream (view textual-view) &key)
 (completing-from-suggestions (stream)
 (dolist (name list-of-names)
 (suggest (format nil "~a" name) name))))

This seems a perfectly reasonable thing to do but it breaks things badly because completing-from-
suggestions returns three values where the second value is typically t (indicating success). However,

returning t as the presentation type can subsequently break things in a confusing manner. The correct thing

to do, of course, it to wrap the call to completing-from-suggestions appropriately so that only

the first value is returned:
140 CLIM 2.2 User Guide

(define-presentation-method accept
 ((type my-tupe) stream (view textual-view) &key)
 (let ((obj (completing-from-suggestions (stream)
 (dolist (name list-of-names)

(suggest (format nil "~a" name) name))))
 obj))

complete-input [Function]

Arguments: stream function &key partial-completers allow-any-input
possibility-printer help-displays-possibilities

■ Reads input from stream, completing over a set of possibilities. Typically, you will not need to

call complete-input directly, but will instead use complete-from-generator,

complete-from-possibilities, or completing-from-suggestions,

function

is a function of two arguments which is called to generate the possibilities. Its first argument is a

string containing the input so far. Its second argument is the completion mode, one of the follow-

ing:

:complete

Completes the input as much as possible, except that if the user's input exactly matches one

of the possibilities, even if it is a left substring of another possibility, the shorter possibility

is returned as the result.

:complete-limited

Completes the input up to the next partial delimiter.

:complete-maximal

Completes the input as much as possible.

:possibilities

Causes complete-input to return a list of the possible completions.

function must return five values:

string

The completed input string.

success

t if completion was successful (otherwise nil).

object

The accepted object (nil if unsuccessful).

nmatches

The number of possible completions of the input.

possibilities

An alist of completions ((string object) ...), returned only when the completion mode

is :possibilities.

■ complete-input returns three values: object, success, and string.

■ partial-completers is a (possibly empty) list of characters that delimit portions of a name

that can be completed separately. The default is an empty list. Often this will the partial completers

will consist of spaces and dashes.

If allow-any-input is t, complete-input will return as soon as the user types an activa-

tion gesture, even if the input is not any of the possibilities. This is used when you want to complete
CLIM 2.2 User Guide 141

from a set of existing items, and still allow the user to type in the name of a new item, for example,

CLIM's pathname type uses this. The default is nil.

If possibility-printer is supplied, it should be a function of three arguments, a possi-

bility, a presentation type, and a stream. The function should display the possibility on the stream.

The possibility will be a list of two elements, the first being a string and the second being the object

corresponding to the string.

If help-displays-possibilities is t (the default), then when the user types a help character

(one of the characters in *help-gestures*), CLIM will display all the matching possibilities. If

nil, then CLIM will not display the possibilities unless the user types a possibility character (one

of the characters in *possibilities-gestures*).

complete-from-generator [Function]

Arguments: string generator delimiters &key (action :complete)
predicate

■ Given an input string string and a list of delimiter characters delimiters that act as partial

completion characters, complete-from-generator completes against the possibilities that are

generated by the function generator. generator is a function of two arguments, the string

string and another function that it calls in order to process the possibility.

action will be one of :complete, :complete-maximal, :complete-limited, or

:possibilities. See the function complete-input.

predicate should be a function of one argument, an object. If the predicate returns t, the pos-

sibility corresponding to the object is processed, otherwise it is not.

complete-from-generator returns five values, the completed input string, the success

value (t if the completion was successful, otherwise nil), the object matching the completion (or

nil if unsuccessful), the number of matches, and a list of possible completions if action was

:possibilities.

You might use complete-from-generator inside the accept method for a cardinal number pre-

sentation type as follows:

(let ((possibilities ’(("One" 1) ("Two" 2) ("Three" 3))))
 (flet ((generator (string suggester)
 (declare (ignore string))
 (dolist (possibility possibilities)
 (funcall suggester (first possibility) (second possibility)))))
 (clim:complete-input
 stream
 #’(lambda (string action)
 (clim:complete-from-generator
 string #’generator nil
 :action action)))))

complete-from-possibilities [Function]

Arguments: string completions delimiters &key (action :complete)
predicate name-key value-key

■ Given an input string string and a list of delimiter characters delimiters that act as partial

completion characters, complete-from-generator completes against the possibilities in the

sequence (a list or a vector) completions.

The completion string is extracted from the possibilities in completions by applying name-
key. The object is extracted by applying value-key. The default for name key is first, and the
142 CLIM 2.2 User Guide

default for value key is second (that is, the default format for each element in completions is a list

of length 2).

action will be one of :complete, :complete-maximal, :complete-limited, or

:possibilities. See the function complete-input.

predicate should be a function of one argument, an object. If the predicate returns t, the pos-

sibility corresponding to the object is processed, otherwise it is not.

complete-from-possibilities returns five values, the completed input string, the suc-

cess value (t if the completion was successful, otherwise nil), the object matching the completion

(or nil if unsuccessful), the number of matches, and a list of possible completions if action was

:possibilities.

You might use complete-from-possibilities inside the accept method for a cardinal num-

ber presentation type as follows:

(let ((possibilities ’(("One" 1) ("Two" 2) ("Three" 3))))
 (clim:complete-input
 stream
 #’(lambda (string action)
 (clim:complete-from-possibilities
 string possibilities nil
 :action action))))

completing-from-suggestions [Macro]

Arguments: (stream &key partial-completers allow-any-input
possibility-printer help-displays-possibilities) &body body

■ Reads input from stream, completing over a set of possibilities generated by calls to suggest
in body. Returns three values: object, success, and string.

partial-completers, allow-any-input, possibility-printer, and help-
displays-possibilities are as for complete-input.

■ Here is an example of its use:

(clim:completing-from-suggestions (stream)
 (map nil
 #’(lambda(x)
 (clim:suggest (car x) (cdr x)))
 ’(("One" . 1)
 ("Two" . 2)
 ("Three" . 3))))

suggest [Function]

Arguments: name &rest objects

■ Specifies one possibility for completing-from-suggestions. completion is a string,

the printed representation. object is the internal representation.

This function has lexical scope and is defined only inside the body of completing-from-
suggestions.

completion-gestures [Variable]

■ A list of gesture names that cause complete-input to complete the input as fully as possible.

This includes the gesture corresponding to the Tab character.
CLIM 2.2 User Guide 143

possibilities-gestures [Variable]

■ A list of gesture names that cause complete-input to display a help message and the list of

possibilities. This includes the gesture corresponding to the Control-? character.

help-gestures [Variable]

■ A list of gesture names that cause accept and complete-input to display a help message,

and, for some presentation types, the list of possibilities. This includes the gesture corresponding to

the Control-? character.

8.6.11 clim:accept and the input editor

Sometimes after an acceptmethod has read some input from the user, it may be necessary to insert a mod-

ified version of that input back into the input buffer. The following two functions can be used to modify the

input buffer:

replace-input [Generic function]

Arguments: stream new-input &key start end rescan buffer-start

■ Replaces the stream's input buffer with the string new-input. start and end specify what

part of the new-input will be inserted into the buffer, and default to 0 and the end of the string.

buffer-start specifies where new-input should be inserted, and defaults to the current

position in the input line. If rescan is t, a rescan operation will be queued; the default is nil. Usu-

ally, you should use the default values for buffer-start and rescan, since the input editor

automatically arranges for the correct behavior to occur under those circumstances.

You can use this in an accept method that needs to replace some of the user's input by some-

thing else. For example, complete-input uses it to replace partial input with the completed

input.

■ The returned value is the position in the input buffer.

presentation-replace-input [Generic function]

Arguments: stream object type view &key rescan buffer-start

■ This is like replace-input, except that the new input to insert into the input buffer is gotten

by presenting the object object with the presentation type type and view view.

rescan and buffer-start are as for replace-input.

For example, the following accept method reads a token followed by a system or a pathname, but if

the user clicks on either a system or a pathname, it inserts that object into the input buffer and returns:

(clim:define-presentation-method clim:accept
 ((type library) stream (view textual-view)
 &key default)
 (clim:with-input-context (’(or system pathname)) (object type)
 (let ((system (clim:accept ’(clim:token-or-type (:private) system)
 :stream stream :view view
 :prompt nil :display-default nil
 :default default
 :additional-delimiter-gestures ’(#\space)))
 file)
 (let ((char (clim:read-gesture :stream stream)))
144 CLIM 2.2 User Guide

 (unless (eql char #\space)
 (clim:unread-gesture char :stream stream))
 (when (eql system ’:private)
 (setq file (clim:accept ’pathname
 :stream stream :view view
 :prompt "library pathname"
 :display-default t)))
 (if (eql system ’:private) file system)))
 (t (clim:presentation-replace-input stream object type view)
 (values object type))))

Occasionally, acceptmethods will want to change the conditions under which input fields (or the entire

input line) should be terminated. The following macros are useful for this:

with-activation-gestures [Macro]

Arguments: (additional-gestures &key override) &body body

■ Specifies characters that terminate input during the execution of body. additional-ges-
tures is a character or a form that evaluates to a list of characters. Since accept establishes a set

of activation gestures, it is only rarely useful to establish you own set.

If override is t, then the additional-gestures will override the existing activation

characters. If it is nil (the default), then additional-gestures will be added to the existing

set of activation characters.

See the :activation-gestures option to accept. See also see the variable

standard-activation-gestures.

with-delimiter-gestures [Macro]

Arguments: (additional-gestures &key override) &body body

■ Specifies characters that terminate an individual token but not the entire input sentence during the

execution of body. additional-gestures is a character or a form that evaluates to a list of

characters. Establishing your own set of delimiter gestures is most useful when you write an accept
method that reads multiple fields separated by some delimiter.

If override is t, then the additional-gestures will override the existing blip charac-

ters. If it is nil (the default), then additional-gestures will be added to the existing set of

blip characters.

See the :delimiter-gestures option to accept.

standard-activation-gestures [Variable]

■ A list of gesture names that cause the current input to be activated. This includes the gestures cor-

responding to the Return and Newline characters.

activation-gestures [Variable]

■ A list containing the gesture names of the currently active activation gestures.

activation-gesture-p [Function]

Arguments: gesture

■ Returns t if gesture is a currently active activation gesture.

delimiter-gestures [Variable]

■ A list containing the gesture names of the currently active delimiter gestures.
CLIM 2.2 User Guide 145

delimiter-gesture-p [Function]

Arguments: gesture

■ Returns t if gesture is a currently active delimiter gesture.

8.6.12 Help facilities for clim:accept

accept tries to generate meaningful help messages based on the name of the presentation type, but some-

times this is not adequate. You can use with-accept-help to create more complex help messages.

with-accept-help [Macro]

Arguments: options &body body

■ Binds the local environment to control Help and Control-? documentation for input to accept.

accept sets up a help context each time it is called, so it is generally only useful to use with-
accept-help when you are writing complex accept methods that read multiple fields by recur-

sively calling accept.

options is a list of option specifications. Each specification is itself a list of the form (help-
option help-string). help-option is either a symbol that is a help-type or a list of the

form (help-type mode-flag).

help-type must be one of:

:top-level-help

Specifies that help-string be used instead of the default help documentation provided

by accept.

:subhelp

Specifies that help-string be used in addition to the default help documentation pro-

vided by accept.

mode-flag must be one of:

:append

Specifies that the current help string be appended to any previous help strings of the same

help type. This is the default mode.

:override

Specifies that the current help string is the help for this help type; no lower-level calls to

with-accept-help can override this. (:override works from the outside in.)

:establish-unless-overridden

Specifies that the current help string be the help for this help type unless a higher-level call

to with-accept-help has already established a help string for this help type in the

:override mode. This is what accept uses to establish the default help.

help-string is a string or a function that returns a string. If it is a function, it receives three

arguments, the stream, an action (either :help or :possibilities) and the help string gener-

ated so far.

■ None of the arguments is evaluated.

Here are some examples of the use of with-accept-help. Evaluate the following forms and type

Help or Control-?.
146 CLIM 2.2 User Guide

(clim:with-accept-help ((:subhelp "This is a test."))
 (clim:accept ’pathname))

==> You are being asked to enter a pathname. [ACCEPT did this for you]
 This is a test. [You did this via :SUBHELP]

(clim:with-accept-help ((:top-level-help "This is a test."))
 (clim:accept ’pathname))

==> This is a test. [You did this via :TOP-LEVEL-HELP]

(clim:with-accept-help (((:subhelp :override) "This is a test."))
 (clim:accept ’pathname))

==> You are being asked to enter a pathname. [ACCEPT did this]
 This is a test. [You did this via :SUBHELP]

(clim:define-presentation-type test ())
(clim:define-presentation-method clim:accept ((type test) stream view &key)
 (values (clim:with-accept-help
 ((:subhelp "A test is made up of three things:"))
 (clim:completing-from-suggestions (...) ...))))

(clim:accept ’test) ==> You are being asked to enter a test.
 A test is made up of three things:
(clim:with-accept-help ((:subhelp "This is a test."))

accept uses the input editor to read textual input from the user. If you want an accept method to do

any sort of typeout, you must coordinate it with the input editor via with-input-editor-typeout
or input-editor-format.

8.6.13 Using views with CLIM presentation types

Views in CLIM provide a general mechanism by which data can be accepted and presented in different ways

depending on context. While application programmers can define their own view classes and specialize pre-

sentation methods on these classes, the primary use of views in CLIM is in controlling the appearance of

accepting-values dialogs.

This section gives a description of the built-in view classes available in CLIM and gives various examples

of how, using views, the application programmer can control the choice of gadgets used in accepting-
values dialogs.

The view argument, as passed to accept, can either be an instance of a view class, a symbol naming

the class, or a list of values which are passed to make-instance to create the view object.

CLIM provides a number of view classes:

textual-view

textual-dialog-view

textual-menu-view

gadget-view

gadget-dialog-view
CLIM 2.2 User Guide 147

gadget-menu-view

pointer-documentation-view

and corresponding instances. For example +textual-view+ is an instance of the class textual-
view.

CLIM also provides a number of gadget views:

toggle-button-view

push-button-view

radio-box-view

check-box-view

slider-view

text-field-view

text-editor-view

list-pane-view

option-pane-view

Gadget views take the same initargs are the corresponding gadget class. For example the following view

can be used to specify a vertical radio box:

'(radio-box-view :orientation :vertical)

CLIM defines accept-present-default presentation methods for these views and appropriate

presentation types so they can be used in accepting-values dialogs. For example:

(accepting-values (stream)

 (accept '(member a b c) :view 'list-pane-view :stream stream))

Note that using a gadget view outside of an accepting-values won't work because no accept pre-

sentation methods (just accept-present-default) are defined on these views - so doing the follow-

ing in the CLIM Listener will not have the desired effect:

(accept '(member a b c) :view 'list-pane-view :stream *standard-
input*)

Also accept-present-default methods are only defined for the following combinations of pre-

sentation type and views. (Note that text-field-view works with all types listed even though it is not

repeated in each line).

Presentation type Possible views

completion radio-box-view
list-pane-view
option-pane-view

subset-completion check-box-view
list-pane-view

boolean toggle-button-view

real slider-view
148 CLIM 2.2 User Guide

Note that member, member-sequence and member-alist are presentation type abbreviations for

completion; and subset, subset-sequence and subset-alist are abbreviations for

subset-completion.

Normally you don't need to specify a gadget view explicitly within an accepting-values. This is

because gadget-dialog-view is an indirect view. CLIM decodes these views into a more specific view

automatically depending on the presentation type. For example: for the completion presentation type,

gadget-dialog-view is decoded to radio-box-view. You would only need to explicitly specify a

view if you wanted to override the default, for example, to use a list-pane-view or to control the ori-

entation of the radio box (see examples above).

The view that CLIM uses for an accepting-values is taken from the frame-manager. By default this

is gadget-dialog-view. You can specify other views by binding stream-default-view of the

accepting-values stream. For example:

(accepting-values (stream :view +textual-dialog-view+)
 (clim-utils:letf-globally (((stream-default-view stream)
 +textual-dialog-view+))
 (accept '(member a b c) :stream stream)))

will give you a dialog with old CLIM 1 style fields rather than CLIM 2 gadgets.

stream-default-view [Generic function]

Arguments: stream

■ Returns the default view for the stream stream. Calls to accept default the view argument

from stream-default-view.

Many CLIM streams will have the textual view, +textual-view+, as their default view.

Inside of menu-choose, the default view will be +textual-menu-view+ or +gadget-
menu-view+. Inside of accepting-values, the default view will be what is returned by

frame-manager-dialog-view, defined next.

You can change the default view for a stream by using setf on stream-default-view.

frame-manager-dialog-view [Generic function]

Arguments: frame-manager

■ Returns the view object that should be used to control the look-and-feel of accepting-val-
ues dialogs. In Allegro CLIM, this will be +gadget-dialog-view+, but it also makes sense for

you to change the value to be +textual-dialog-view+.

■ You can change the dialog view for the frame managers by calling setf on frame-manager-
dialog-view.

float slider-view

integer slider-view

string text-editor-view

t text-field-view

Presentation type Possible views
CLIM 2.2 User Guide 149

textual-view [Class]

■ The class that represents textual views. Textual views are used in most command-line oriented

applications.

textual-menu-view [Class]

■ The class that represents the view that is used inside textual menus.

textual-dialog-view [Class]

■ The class that represents the view that is used inside textual accepting-values dialogs.

+textual-view+ [Constant]

■ An instance of the class textual-view.

+textual-menu-view+ [Constant]

■ An instance of the class textual-menu-view. Inside menu-choose, the default view for

the menu stream is bound to +textual-menu-view+.

+textual-dialog-view+ [Constant]

■ An instance of the class textual-dialog-view. Inside accepting-values, the default

view for the dialog stream is bound to +textual-dialog-view+.

gadget-view [Class]

■ The class that represents gadget views. Gadgets views are used for toolkit-oriented applications.

gadget-menu-view [Class]

■ The class that represents the view that is used inside toolkit-style menus.

gadget-dialog-view [Class]

■ The class that represents the view that is used inside toolkit-style accepting-values dialogs.

■ The gadget dialog view is one example of an indirect view. When you use this view when calling

accepting-values, CLIM decodes the view into a more specific view based on the presentation

type. These more specific views include +radio-box-view+, +check-box-view+,

+toggle-button-view+, +slider-view+, +text-field-view+, +text-editor-
view+, +list-pane-view+, and +option-pane-view+.

The following is a table of presentation types and the actual view they map to when you use the gad-
get-dialog-view view.

+gadget-view+ [Constant]

■ An instance of the class gadget-view.

Presentation type Actual view

clim:completion clim:+radio-box-view+

clim:subset-completion clim:+check-box-view+

clim:boolean clim:+toggle-button-
view+

others clim:+text-field-view+
150 CLIM 2.2 User Guide

+gadget-menu-view+ [Constant]

■ An instance of the class gadget-menu-view. Inside menu-choose, the default view for the

menu stream is bound to +gadget-menu-view+.

+gadget-dialog-view+ [Constant]

■ An instance of the class gadget-dialog-view. Inside accepting-values, the default

view for the dialog stream is bound to +gadget-dialog-view+.

8.6.14 Functions that operate on CLIM presentation types

These are some general-purpose functions that operate on CLIM presentation types.

describe-presentation-type [Function]

Arguments: presentation-type &optional (stream *standard-output*)
(plural-count 1)

■ Describes the presentation-type on the stream.

If stream is nil, a string containing the description is returned. plural-count is either

nil (meaning that the description should be the singular form of the name), t (meaning that the

description should the plural form of the name), or an integer greater than zero (the number of items

to be described).

The presentation-type can be a presentation type abbreviation.

CLIM can generally figure out a good default description for a presentation type, but you can specialize

this function to get a better description, if necessary. For example, CLIM's complex type has an :after
method like this:

(define-presentation-method describe-presentation-type :after
 ((type complex) stream plural-count)
 (declare (ignore type plural-count))
 (unless (eq type ’*)
 (format stream " whose components are ")
 (describe-presentation-type type stream t)))

presentation-typep [Function]

Arguments: object type

■ Returns t if object is of the type specified by type, otherwise returns nil. type may not be

a presentation type abbreviation.

■ This function is analogous to typep.

presentation-type-of [Function]

Arguments: object

■ Returns a presentation type of which object is a member. presentation-type-of returns

the most specific presentation type that can be conveniently computed and is likely to be useful to the

programmer. This is often, but not always, the class name of the class of the object.

■ If presentation-type-of cannot determine the presentation type of the object, it may

return either expression or t.

■ This is analogous to the Common Lisp type-of function.
CLIM 2.2 User Guide 151

presentation-subtypep [Function]

Arguments: type putative-supertype

■ Answers the question ‘Is the type specified by type a subtype of the type specified by puta-
tive-supertype?’. Neither type nor putative-subtype may be presentation type abbre-

viations.

■ This function is analogous to subtypep.

■ presentation-subtypep returns two values, subtypep and known-p. subtypep can

be t (meaning that type is definitely a subtype of putative-supertype) or nil (meaning that

type is definitely not a subtype of putative-supertype when known-p is t, or that the

answer cannot be determined if known-p is nil).

■ See the clim presentation method presentation-subtypep for a detailed description of

how this works.

with-presentation-type-decoded [Macro]

Arguments: (name-var &optional parameters-var options-var) type
&body body

■ The specified variables are bound to the components of the presentation type specifier, the forms

in body are executed, and the values of the last form are returned. The value of the type must be a

presentation type specifier. name-var, if non-nil, is bound to the presentation type name.

parameters-var, if present and non-nil, is bound to a list of the parameters. options-var,

if present and non-nil, is bound to a list of the options.

■ This macro is particularly useful inside of presentation translators, when you might wish to more

closely examine the presentation type of the presentation on which the translator was called on.

with-presentation-type-options [Macro]

Arguments: (type-name type) &body body

■ Variables with the same name as each option in the definition of the presentation type are bound

to the option values in type, if present, or else to the defaults specified in the definition of the pre-

sentation type. The forms in body are executed in the scope of these variables and the values of the

last form are returned.

■ The value of the form type must be a presentation type specifier whose name is type-name.

type-name is not evaluated.

with-presentation-type-parameters [Macro]

Arguments: (type-name type) &body body

■ Variables with the same name as each parameter in the definition of the presentation type are

bound to the parameter values in type, if present, or else to the defaults specified in the definition

of the presentation type. The value of the form type must be a presentation type specifier whose

name is type-name. type-name is not evaluated. The forms in body are executed in the scope

of these variables and the values of the last form are returned.

8.7 Presentation translators in CLIM

CLIM provides a mechanism for translating between types. In other words, within an input context for pre-

sentation type A, the translator mechanism allows a programmer to define a translation from presentations

of some other type B to objects that are of type A.

You can define presentation translators to make the user interface of your application more flexible. For

example, suppose the input context is expecting a command. In this input context, all displayed commands
152 CLIM 2.2 User Guide

are sensitive, so the user can point to one to execute it. However, suppose the user points to another kind of

displayed object, such as a student. In the absence of a presentation translator, the student is not sensitive

because the user must enter a command and cannot enter anything else to this input context.

In the presence of a presentation translator that translates from students to commands, however, the stu-

dent would be sensitive. In one scenario, the student is highlighted, and the middle pointer button does

"Show Transcript" of the student.

A presentation translator defines how to translate from one presentation type to another. In the scenario

above, the input context is command. A user-defined presentation translator states how to translate from the

student presentation type to the command presentation type.

The concept of translating from an arbitrary presentation type to a command is so useful that CLIM pro-

vides a special macro for this purpose, define-presentation-to-command-translator. You

can think of these presentation-to-command translators as a convenience for the users; users can select the

command and give the argument at the same time. In fact, this is the fundamental tool for providing highly

interactive user interfaces in CLIM.

Note that presentation-to-command translators make it easier to write applications that give a direct

manipulation feel to the user.

8.7.1 What controls sensitivity in CLIM?

A presentation that appears on the screen can be sensitive. This means that the presentation can be operated

on directly by using the pointer. In other words, the presentation is relevant to the current context. When the

user moves the pointer over a sensitive presentation, the presentation is highlighted to indicate that it is sen-

sitive. (In rare cases, the highlighting of some sensitive presentations is turned off.)

Sensitivity is controlled by three factors: the current input context, the location of the pointer, and the

chord of modifier keys being pressed.

• Input context type -- a presentation type describing the type of input currently being accepted.

• Pointer location -- the pointer is pointing at a presentation or a blank area on the screen.

• Modifier keys -- these are control, meta, super, hyper, and shift. These keys expand the space of

available gestures beyond what is available from the pointer buttons.

Presentation translators are the link among these three factors.

A presentation translator specifies the conditions under which it is applicable, a description to be dis-

played, and what to do when it is invoked by clicking a button on the pointer.

A presentation is sensitive if there is at least one applicable translator that could be invoked by clicking a

button with the pointer at its current location and the modifier keys in their current state. If there is no appli-

cable translator, there is no sensitivity, and no highlighting.

Each presentation translator has two associated presentation types, its from-presentation-type and

to-presentation-type, which are the primary factors in its applicability. The basic idea is that a pre-

sentation translator translates an output presentation into an input presentation. Thus a presentation transla-

tor is applicable if the type of the presentation at the pointer matches from-presentation-type and the

input context type ‘matches’ to-presentation-type. (We define what ‘match’ means below.) Each pre-

sentation translator is attached to a particular pointer gesture, which is a combination of a pointer button and

a set of modifier keys. Clicking the pointer button while holding down the modifier keys invokes the trans-

lator.

A translator produces an input presentation consisting of an object and a presentation type, to satisfy the

program accepting input. The result of a translator might be returned from accept, or might be absorbed
CLIM 2.2 User Guide 153

by a parser and provide only part of the input. An input presentation is not actually represented as an object.

Instead, a translator's body returns two values. The object is the first value. The presentation type is the sec-

ond value; it defaults to to-presentation-type if the body returns only one value.

8.7.2 CLIM operators for defining presentation translators

You can write presentation translators that apply to blank areas of the window, that is, areas where there are

no presentations. Use blank-area as the from-presentation-type. There is no highlighting

when such a translator is applicable, since there is no presentation to highlight. You can write presentation

translators that apply in any context by supplying nil as the to-presentation-type.

define-presentation-translator supports the general case, and define-
presentation-to-command-translator supports a common idiom.

define-presentation-translator [Macro]

Arguments: name (from-type to-type command-table &key (gesture
':select) tester tester-definitive documentation
pointer-documentation (menu t) priority) arglist &body body

■ Defines a presentation translator named namewhich translates from objects of type from-type
to objects of type to-type. from-type and to-type are presentation type specifiers, but must

not include presentation type options. from-type and to-type may also be presentation type

abbreviations. to-type can also be nil, in which case the translator applies in any input context

since nil is a subtype of all presentation types.

■ None of the arguments to define-presentation-translator is evaluated. Here is what

the arguments do:

name

The name of the presentation translator.

from-type

The presentation type of the presentation in a window. Presentation type options are not allowed

in from-type.

to-type

The presentation type of the returned object. Presentation type options are not allowed in to-
type. When to-type is nil, this translator is applicable in all input contexts.

command-table

This specifies which command table the translators should be stored in. It should be either a com-

mand table or the name of a command table. This translator will be applicable only when this

command table is one of the command tables from which the current application frame's com-

mand table inherits.

gesture

A gesture-name (see the section 8.7.6 Pointer Gestures in CLIM). The body of the transla-

tor will be run only if the translator is applicable and the pointer event corresponding to the user's

gesture matches the gesture name in the translator. For more information, see the section 8.7.3

Applicability of CLIM presentation translators. gesture defaults to :select.

Note that :gesture t means that any user gestures will match this translator, and :gesture
nil, means that no user gesture will match this translator. :gesture nil is commonly used

when the translator should appear only in a menu.
154 CLIM 2.2 User Guide

tester

Either a function or a list of the form (tester-arglist . tester-body), where tester-
arglist takes the same form as arglist (see below), and tester-body is the body of the

tester. The tester should return either t or nil. If it returns nil, then the translator is definitely

not applicable. If it returns t, then the translator might be applicable, and the body of the translator

may be run in order to definitively decide if the translator is applicable (for more information, see

the section 8.7.3 Applicability of CLIM presentation translators). If no tester is supplied,

CLIM arranges for a tester that always returns t.

You should use a tester when discriminating only on the input context and presentation type are

not enough. For example, if you were implementing a gadget set by using presentations, your

translators might have a tester that ensures that a gadget has not been disabled.

tester-definitive

When this is t and the tester returns t, this translator is definitely applicable. When this is nil
and the tester returns t, this translator might be applicable; in order to find out for sure, the body

of the translator is run, and, if it returns an object that matches the input context type (using

presentation-typep), this translator is applicable. The default depends on whether

tester is specified: nil if it is and t if it is not (and thus a translator with neither tester nor

tester-definitive specified is definitively applicable). You will seldom need to use this.

documentation

An object that will be used to document the translator. For example, in menus: if the object is a

string, the string itself will be used as the documentation. Otherwise, it should be either a function

or a list of the form (doc-arglist . doc-body), where doc-arglist takes the same form

as arglist, but includes a stream argument as well (see below), and doc-body is the body

of the documentation function. The body of the documentation function should write the docu-

mentation to stream. The default is nil, meaning that there is no documentation.

pointer-documentation

Like documentation except that pointer-documentation is used in the pointer docu-

mentation line. This documentation is usually more succinct than documentation. If

pointer-documentation is not supplied, it defaults to documentation.

You should use this if normal documentation is expensive to compute. If the normal documenta-

tion is expensive to compute, and you do not use :pointer-documentation, this can slow

down input to your application, because CLIM will spend too much time computing pointer doc-

umentation.

menu

The value should be t or nil. The default is t, meaning the translator is to be included in the

menu popped-up by the :menu gesture (click Right on a three-button mouse). Use :menu t

:gesture nil to make the translator accessible only through the menu. :menu nil means that

the translator should not appear in the menu.

priority

An integer that represents the priority of the translator. The default is 0. When there are several

translators that match for the same gesture, the priority is used to determine which is to be used.

The algorithm for comparing priorities is complicated. It is described under the heading Deter-
mining the priority of translators just below. Use priority when there is a collision between

translators, and you want to specify that one take precedence over another.
CLIM 2.2 User Guide 155

arglist

tester-arglist

doc-arglist

An argument list that must be a subset (using string-equal as the comparison) of the canon-

ical argument list:

(object presentation context-type frame event window x y)

In the body of the translator (or the tester), object will be bound to the presentation's object,

presentation will be bound to the presentation that was clicked on, context-type will

be bound to the presentation type of the context that actually matched, frame will be bound to

the application frame that is currently active (usually *application-frame*), event will

be bound to the object representing the gesture that the user used, window will be bound to the

window stream from which the event came, and x and ywill be bound to the X and Y positions

within window where the pointer was when the user issued the gesture. The special variable

input-context will be bound to the current input context.

body

is the body of the translator, and may return one, two, or three values. The first returned value is

an object that must be presentation-typep of to-type. The second value is either nil
or a presentation type that must be presentation-subtypep of to-type.

■ The third returned value is either nil or a list of options (as keyword-value pairs) that will be

interpreted by accept. The only option currently used by accept is :echo. If the :echo option

is t (the default), the object returned by the translator will be echoed by inserting its textual repre-

senting into the input buffer. If the :echo option is nil, the object will not be echoed.

■ body is run in the context of the application. The first two values returned by body are used, in

effect, as the returned values for the call to accept that established the matching input context.

Determining the priority of translators
If there are more than one translator found by find-applicable-translators, the priority of the

translators is used along with other information to decide which to use. The priority is an integer specified

by the priority keyword argument to define-presentation-translator. The integer

encodes the high-order and the low-order priorities.

The high-order priority is the first value returned by (floor priority 10), that is, the number of

times 10 goes into priority. Thus, if priority is 8, the high-order priority is 0, priority 36 has high-order

priority 3, and priority 1725 has high-order priority 172. The low-order priority is the second value returned

by (floor priority 10), that is the remainder of dividing priority by 10. Thus, if priority is 8, the low-

order priority is 8, priority 36 has low-order priority 6, and priority 1725 has low-order priority 5. There is

a distinction between high- and low-order priorities because comparing from-types of two translators of

equal high-order priority takes precedence over comparing their low-order priorities.

Here are the specific rules. Translators are compared by each rule in order.

1. Translators with a higher high-order priority precede translators with a lower high-order priority.

This allows programmers to set the priority of a translator in such a way that it always precedes

all other translators.

2. Translators with a more specific from-type precede translators with a less specific from-
type.

3. Translators with a higher low-order priority precede translators with a lower low-order priority.

This allows programmers to break ties between translators that translate from the same type.
156 CLIM 2.2 User Guide

4. Translators from the current command table precede translators inherited from superior command

tables.

Examples of presentation translators
Here is an example that defines a presentation translator to extract the real number representing the resis-

tance of a resistor from a resistor presentation. Users have the options of typing in a resistance to the

input prompt or clicking on a resistor presentation.

(clim:define-presentation-translator resistor-resistance
 (resistor real ECAD-command-table
 :documentation "Resistance of this resistor"
 :gesture :select)
 (object)
 (resistor-resistance object))

CLIM supplies an identity translator that maps an object of any presentation type to itself. This translator

generates pointer documentation that is just the printed representation of the object. The following translator

is what CLIM uses for items in menus. Its purpose is to generate better pointer documentation based on the

menu item. It uses the :priority option to ensure that it takes precedence over the usual identity trans-

lator.

(clim:define-presentation-translator menu-item-identity
 (menu-item menu-item global-command-table
 :priority 1 ;prefer this to IDENTITY
 :tester-definitive t
 :documentation
 ((object stream)
 (let ((documentation (or (menu-item-documentation object)
 (menu-item-display object))))
 (write documentation :stream stream :escape nil)))
 :gesture :select)
 (object presentation)
 (values object (clim:presentation-type presentation)))

define-presentation-to-command-translator [Macro]

Arguments: name (from-type command-name command-table &key (gesture
':select) tester documentation pointer-documentation (menu
t) priority (echo t)) arglist &body body

■ Defines a presentation translator that translates a displayed presentation into a command.

This is similar to define-presentation-translator, except that the to-typewill be

derived to be the command named by command-name in the command table command-table.

command-name is the name of the command that this translator will translate to. Note that com-
mand-name and command-table are required arguments.

The echo argument controls whether or not the command should be echoed in the command line

when a user invokes this translator. The default for echo is t.

The other arguments to define-presentation-to-command-translator are the

same as for define-presentation-translator. For information on the arguments, see the

macro define-presentation-translator.

The body of the translator should return a list of the arguments to the command named by com-
mand-name. body is run in the context of the application. The returned value of the body, appended

to the command name, is eventually passed to execute-frame-command.
CLIM 2.2 User Guide 157

■ None of the arguments to define-presentation-to-command-translator is evalu-

ated.

Examples of Presentation to Command Translators
The following example defines a pair of translators. The first deletes a file. The second undeletes a file, but

has a tester that causes the translator to be applicable only if the file has been deleted.

(clim:define-presentation-to-command-translator delete-file
 (pathname com-delete-file fsedit-command-table
 :tester ((object) (not (file-deleted-p object)))
 :documentation "Delete this file"
 :gesture :delete)
 (object)
 (list object))

(clim:define-presentation-to-command-translator undelete-file
 (pathname com-undelete-file fsedit-command-table
 :tester ((object) (file-deleted-p object))
 :documentation "Undelete this file"
 :gesture :delete)
 (object)
 (list object))

Note that, because of the highly restricted syntax of define-presentation-to-command-
translator, these two command translators cannot be folded into a single command translator. You

could write a normal translator that does this, as follows.

(clim:define-presentation-translator delete-or-undelete-file
 (pathname command fsedit-command-table
 :gesture :delete
 :documentation
 ((object stream)
 (if (file-deleted-p object)
 (write-string "Undelete this file" stream)
 (write-string "Delete this file" stream)))
 :tester-definitive t)
 (object)
 (if (file-deleted-p object)
 ‘(com-undelete-file ,object)
 ‘(com-delete-file ,object)))

define-presentation-action [Macro]

Arguments: name (from-type to-type command-table
&key (gesture :select) tester documentation
pointer-documentation (menu t) priority)
arglist &body body

■ This is similar to define-presentation-translator, except that the body of the action

is not intended to return a value, but should instead side-effect some sort of application state.

name

The name of the presentation action.
158 CLIM 2.2 User Guide

from-type

The presentation type of the presentation in a window. Presentation type options are not allowed

in from-type.

to-type

The presentation type of the current input context. Presentation type options are not allowed in

to-type. When to-type is nil, this action is applicable in all input contexts.

command-table

Controls the applicability of this handler. command-table should be either a command table

or the name of a command table. Actions are stored in the command table command-table.

■ The other arguments to define-presentation-action are the same as for define-
presentation-translator. For information on the arguments, see the macro define-
presentation-translator above.

■ None of the arguments to define-presentation-action is evaluated.

Note that an action does not satisfy requests for input as translators do. An action is something that hap-

pens while waiting for input. After executing an action, the program continues to wait for the same input it

was waiting for prior to executing the action.

From time to time, it is appropriate to write application-specific presentation actions. The key test for

whether something should be an action is that it makes sense for the action to take place while the user is

entering a command sentence, and performing the action will not interfere with the input of the command

sentence. For example, an application framework might have an action that changes what information is dis-

played in one of its panes. It makes sense to do this in the middle of entering a command because informa-

tion displayed in that pane might be used in formulating the arguments to the command. This needn't

interfere with the input of the command since a pane can be redisplayed without discarding the pending par-

tial command. It is for these cases that the presentation action mechanism is provided. A simple rule of

thumb is that actions may be used to alter how application objects are presented or displayed, but anything

having to do with modification of application objects should be embodied in a command, with an appropri-

ate set of translators.

In general, if you are using define-presentation-action to execute any kind of an application

command, you should be using define-presentation-translator or define-
presentation-to-command-translator instead.

Defining a Presentation Action
Presentation actions are only rarely needed. Often a presentation-to-command translator is more appropri-

ate. One example where actions are appropriate is when you wish to pop up a menu during command input.

Here is how CLIM's general menu action could be implemented:

(clim:define-presentation-action presentation-menu
 (t nil clim:global-command-table
 :tester-definitive t
 :documentation "Menu"
 :menu nil
 :gesture :menu)
 (presentation frame window x y)
 (clim:call-presentation-menu presentation clim:*input-context*
 frame window x y
 :for-menu t))
CLIM 2.2 User Guide 159

define-drag-and-drop-translator [Macro]

Arguments: name (from-type to-type destination-type command-table &key
(gesture ':select) tester documentation (menu t) priority
feedback highlighting pointer-cursor) arglist &body body

■ Defines a drag and drop (or direct manipulation) translator named name that translates from

objects of type from-type to objects of type to-type when a from-presentation is picked up,

dragged over, and dropped on to a to-presentation having type destination-type. from-
type, to-type, and destination-type are presentation type specifiers, but must not include

any presentation type options. from-type, to-type and destination-typemay be presen-

tation type abbreviations.

The interaction style used by these translators is that a user points to a from-presentation with

the pointer, picks it up by pressing a pointer button matching gesture, drags the from-presentation

to a to-presentation by moving the pointer, and then drops the from-presentation onto the to-presen-

tation. The dropping might be accomplished by either releasing the pointer button or clicking again,

depending on the frame manager. When the pointer button is released, the translator whose desti-
nation-type matches the presentation type of the to-presentation is chosen. For example, drag-

ging a file to the TrashCan on a Macintosh could be implemented by a drag and drop translator.

While the pointer is being dragged, the function specified by feedback is invoked to provide

feedback to the user. The function is called with eight arguments: the application frame object, the

from-presentation, the stream, the initial x and y positions of the pointer, the current x and y posi-

tions of the pointer, and a feedback state (either :highlight to draw feedback, or

:unhighlight to erase it). The feedback function is called to draw some feedback the first time

pointer moves, and is then called twice each time the pointer moves thereafter (once to erase the pre-

vious feedback, and then to draw the new feedback). It is called a final time to erase the last feedback

when the pointer button is released. feedback defaults to frame-drag-and-drop-feed-
back, whose default method simply draws the bounding rectangle of the object being dragged.

When the from-presentation is dragged over any other presentation that has a direct manipulation

translator, the function specified by highlighting is invoked to highlight that object. The func-

tion is called with four arguments: the application frame object, the to-presentation to be highlighted

or unhighlighted, the stream, and a highlighting state (either :highlight or :unhighlight).

highlighting defaults to frame-drag-and-drop-highlighting, whose default

method simply draws a box around the object over which the dragged object may be dropped.

Note that it is possible for there to be more than one drag and drop translator that applies to the

same from-type, to-type, and gesture. In this case, the exact translator that is chosen for use during

the dragging phase is unspecified. If these translators have different feedback, highlighting, docu-

mentation, or pointer documentation, the exact behavior is unspecified.

■ The other arguments to define-drag-and-drop-translator are the same as for

define-presentation-translator.

Examples of Drag and Drop Translators
Suppose you are implementing some sort of desktop interface to a file system editor. You have already writ-

ten commands for Hardcopy File, Delete File, and so forth, and you want a drag-and-drop interface. Assum-

ing you have some icons that represent a hardcopy device, a trashcan, and so forth, and presentation types

that correspond to those icons, you could do the following:

(clim:define-drag-and-drop-translator dm-hardcopy-file
 (pathname command printer fsedit-comtab
 :documentation "Hardcopy this file")
 (object destination-object)
160 CLIM 2.2 User Guide

 ‘(com-hardcopy-file ,object ,destination-object))

(clim:define-drag-and-drop-translator dm-delete-file
 (pathname command trashcan fsedit-comtab
 :documentation "Delete this file")
 (object)
 ‘(com-delete-file ,object))

(clim:define-drag-and-drop-translator dm-copy-file
 (pathname command folder fsedit-comtab
 :documentation "Copy this file")
 (object destination-object)
 ‘(com-copy-file ,object ,(make-pathname :name (pathname-name object)
 :type (pathname-type object)
 :defaults destination-object)))

blank-area [Presentation type]

■ The type that represents all the places in a window where there is no currently active presentation.

CLIM provides a single null presentation (represented by the value of *null-presentation*)

of this type.

null-presentation [Constant]

■ The null presentation, which occupies all parts of a window where there are no presentations

matching the current input context.

Defining a Presentation Translator from the Blank Area
When you are writing an interactive graphics routine, you will probably encounter the need to have com-

mands available when the mouse is not over any object. To do this, you can write a translator from the

blank-area type. You will probably want the x and y arguments to the translator.

For example:

(clim:define-presentation-to-command-translator add-circle-here
 (clim:blank-area com-add-circle my-command-table
 :documentation "Add a circle here.")
 (x y)
 ‘(,x ,y))

8.7.3 Applicability of CLIM presentation translators

When CLIM is waiting for input (that is, inside a with-input-context), it is responsible for determin-

ing what translators are applicable to which presentations in a given input context. This loop both provides

feedback in the form of highlighting sensitive presentations, and is responsible for calling the applicable

translator when the user presses a pointer button.

with-input-context uses frame-find-innermost-applicable-presentation (via

highlight-applicable-presentation) as its input wait handler, and frame-input-
context-button-press-handler as its button press event handler.

Given a presentation, an input context established by with-input-context, and a user gesture,

translator matching proceeds as follows.

The set of candidate translators is initially those translators accessible in the command table in use by the

current application. For more information, see the section 10.3 Command objects in CLIM.
CLIM 2.2 User Guide 161

A translator matches if all of the following are true. Note that these tests are performed in the order listed.

1. The presentation's type is presentation-subtypep of the translator's from-type,

ignoring type parameters (for example, if from-type is number and the presentation's type is

integer or float, or if from-type is (or integer string) and presentation's type is

integer).

2. The translator's to-type is presentation-subtypep of the input context type, ignoring

type parameters.

3. The translator's gesture either is t, or is the same as the gesture that the user could perform with

the current chord of modifier keys.

4. The presentation's object is presentation-typep of the translator's from-type, if the

from-type has parameters.

5. The translator's tester returned a non-nil value. If there is no tester, the translator behaves as

though the tester always returns t.

6. If there are parameters in the input context type and the :tester-definitive option is not

t in the translator, the value returned by the body of the translator must be presentation-
typep of the input context type. In define-presentation-to-command-
translator and define-presentation-action the tester is always definitive.

The algorithm is somewhat more complicated in the face of nested presentations and nested input con-

texts. In this case, the sensitive presentation is the smallest presentation that matches the innermost input

context. When the nested presentations are all of the same size, all translators for the presentations having

the same size are computed, and the applicable translator is chosen from this set.

When there are several translators that match for the same gesture, the one with the highest priority is

chosen (see the definition of define-presentation-translator and the information under the

heading Determining the priority of presentation translators immediately following the definition for

information on priority).

8.7.4 Input contexts in CLIM

Roughly speaking, the current input context indicates what type of input CLIM is currently asking the user

for. These are the ways you can establish an input context in CLIM:

• accept

• accept-from-string

• The command loop of an application

Nested input contexts in CLIM
The input context designates a presentation type. However, the way to accept one type of object may involve

accepting other types of objects as part of the procedure. (Consider the request to accept a complex number.

It is likely to involve accepting two real numbers.) Such input contexts are called nested. In the case of a

nested input context, several different context presentation types can be available to match the to-
presentation-types of presentation translators.

Each level of input context is established by a call to accept. The macro with-input-context
also establishes a level of input context.

The most common cause of input context nesting is accepting compound objects. For example, you might

define a command called Show File, which reads a sequence of pathnames. When reading the argument to

the Show File command, the input context contains pathname nested inside of (sequence path-
162 CLIM 2.2 User Guide

name). Acceptable keyboard input is a sequence of pathnames separated by commas. A presentation trans-

lator that translates to a (sequence pathname) supplies the entire argument to the command, and the

command processor moves on to the next argument. A presentation translator that translates to a path-
name is also applicable. It supplies a single element of the sequence being built up, and the command pro-

cessor awaits additional input for this argument, or entry of a Space, Newline, or Return to terminate the

argument.

When the input context is nested, sensitivity considers only the innermost context type that has any appli-

cable presentation translators for the currently pressed chord of modifier keys.

8.7.5 Nested presentations in CLIM

Presentations can overlap on the screen, so there can be more than one presentation at the pointer location.

Often when two presentations overlap, one is nested inside the other.

One cause of nesting is presentations of compound objects. For example, a sequence of pathnames has

one presentation for the sequence, and another for each pathname.

When there is more than one candidate presentation at the pointer location, CLIM must decide which pre-

sentation is the sensitive one. It starts with the innermost presentation at the pointer location and works out-

wards through levels of nesting until a sensitive presentation is discovered. This is the innermost

presentation that has any applicable presentation translators, to any of the nested input context types, for the

currently pressed chord of modifier keys. Searching in this way ensures that a more specific presentation is

sensitive. Note that nested input contexts are searched first, before nested presentations. For presentations

that overlap, the most recently presented is searched first.

8.7.6 Gestures in CLIM

A gesture in CLIM is an input action by the user, such as typing a character or clicking a pointer button. A

pointer gesture refers to those gestures that involve using the pointer.

An event is a CLIM object that represents a gesture by the user. (The most important pointer events are

those of class pointer-button-event.)

A gesture name is a symbol that names a gesture.

You can use define-gesture-name to define your own gesture name.

Note that with the exception of the define-gesture-name forms (which you can use to map gesture

names to keys and buttons), the application is independent of which platform it runs on. It uses keywords to

give names to gestures, rather than making references to specific pointer buttons and keyboard keys.

Pointer gestures
CLIM defines the following pointer gesture names:

:select

For the most commonly used translator on an object. For example, use the :select gesture

while reading an argument to a command to use the indicated object as the argument.

:describe

For translators that produce a description of an object (such as showing the current state of an

object). For example, use the :describe gesture on an object in a CAD program to display the

parameters of that object.
CLIM 2.2 User Guide 163

:double-click

The double-click mechanism works the same on both UNIX and Windows. You need to define

the double-click gesture before you can use it:

(clim:define-gesture-name :double-click :pointer-button (:left :double))
(clim:define-gesture-name :double-right :pointer-button (:right :double))
(clim:define-presentation-to-command-translator com-center-screen
 (clim:blank-area com-center-screen came
 :gesture :double-click :menu nil)
 (window)
 (list window))

On both UNIX and Windows, a double-click generates four events, press, release, press, release.

The first click will activate the :select gesture, the second click will activate the :double-click ges-

ture. So if you have an applicable translator on both gestures, both will run.

On Windows, the operating system recognizes double-click events explicitly, using the double-

click settings in your "Mouse" control panel. On UNIX, this mechanism was simulated within

CLIM.

:delete

For translators that delete an object.

:edit

For translators that edit an object.

:menu

For translators that pop up a menu.

These correspond to the following events:

The special gesture name nil is used in translators that are not directly invocable by a pointer gesture.

Such a translator can be invoked only from a menu.

The special gesture name t means that the translator is available on every gesture.

Gesture name Event

:select click Left

:describe click Middle

:double-click double-click on side

specified by :pointer-

button argument.

:menu click Right

:delete click Shift-Middle

:edit click Meta-Left
164 CLIM 2.2 User Guide

Keyboard gestures
Most keyboard gestures simply map the obvious named key to the obvious action (e.g. the :return ges-

ture is mapped to the Return key). Here are the defined gesture names:

Note that :complete, :scroll, :refresh, and :clear-input are not defined to correspond to

keyboard keys in X. You can associate a key with these gesture by defining your own gesture name: In this

case, we associate the :complete gesture with the R1 key:

(clim:define-gesture-name :complete :r1 (:complete))

8.7.7 Operators for gestures in CLIM

The following operators can be used to add or remove new gesture names, to examine CLIM event objects,

or match CLIM event objects against gesture names.

add-gesture-name [Function]

Arguments: name type gesture-spec &key (unique t)

■ Adds a gesture named by the symbol name to the set of gesture names. type is the type of gesture

being created, and must be one of the symbols described below. gesture-spec specifies the phys-

ical gesture that corresponds to the named gesture; its syntax depends on the value of type.

If unique is t, an error is signaled if there is already a gesture named gesture-name. The

default is nil.

When type is :keyboard, gesture-spec is a list of the form (key-name . modifier-
key-names). key-name is the name of a non-modifier key on the keyboard (see below).

modifier-key-names is a (possibly empty) list of modifier key names, which are :shift,

:control, :meta, :super, :hyper.

Gesture name Keystroke

:return Return

:newline Newline

:tab Tab

:rubout Rubout

:backspace Backspace

:page Page

:line Line

:escape Escape

:end End

:abort Control-Z

:help help
CLIM 2.2 User Guide 165

For the standard Common Lisp characters (the 95 ASCII printing characters including Space),

key-name is the character object itself. For the other semi-standard characters, key-name is a

keyword symbol naming the character (:newline, :linefeed, :return, :tab,

:backspace, :page, and :rubout).

When type is :pointer-button, gesture-spec is a list of the form (button-name
. modifier-key-names). button-name is the name of a pointer button (:left, :middle,

or :right), and modifier-key-names is as above.

delete-gesture-name [Function]

Arguments: gesture-name

■ Removes the pointer gesture named gesture-name.

define-gesture-name [Macro]

Arguments: name type gesture-spec &key (unique t)

■ Defines a gesture named name by calling add-gesture-name. None of the arguments is

evaluated.

■ For example:

(define-gesture-name :select :pointer-button (:left))

make-modifier-state [Function]

Arguments: &rest modifiers

■ Given a list of modifier state names, this creates an integer that serves as a modifier key state. The

legal modifier state names are :shift, :control, :meta, :super, and :hyper.

event-matches-gesture-name-p [Function]

Arguments: event gesture-name &optional port

■ Returns t if the device event event matches the gesture named by gesture-name.

For pointer button events, the event matches the gesture name when the pointer button from the

event matches the name of the pointer button one of the gesture specifications named by gesture-
name, and the modifier key state from the event matches the names of the modifier keys in that same

gesture specification.

For keyboard events, the event matches the gesture name when the key name from the event

matches the key name of one of the gesture specifications named by gesture-name, and the mod-

ifier key state from the event matches the names of the modifier keys in that same gesture specifica-

tion.

modifier-state-matches-gesture-name-p [Function]

Arguments: state gesture-name

■ Returns t if the modifier state state matches the modifier state of the gesture named by ges-
ture-name. state is an integer returned by make-modifier-state.
166 CLIM 2.2 User Guide

8.7.8 Events in CLIM

An event is a CLIM object that represents some sort of user gesture (such as moving the pointer or pressing

a key on the keyboard) or that corresponds to some sort of notification from the display server. Event objects

store such things as the sheet associated with the event, the x and y position of the pointer within that sheet,

the key name or character corresponding to a key on the keyboard, and so forth.

When you want to write your own gadgets, you will often specialize the handle-event generic func-

tion on some of these event classes.

event [Class]

■ The protocol class that corresponds to any sort of CLIM event.

■ Note that all of the event classes are immutable. You cannot change any of the slots of an event.

eventp [Function]

Arguments: object

■ Returns t if object is an event, otherwise returns nil.

event-timestamp [Generic function]

Arguments: event

■ Returns an integer that is a monotonically increasing timestamp for the event event.

event-type [Generic function]

Arguments: event

■ For the event event, returns a keyword with the same name as the class name, except stripped

of the ‘-event’ ending. For example, the keyword :key-press is returned by event-type for an

event whose class is key-press-event.

device-event [Class]

■ The instantiable class that corresponds to any sort of device event. It is a subclass of event.

event-sheet [Generic function]

Arguments: event

■ Returns the sheet on which the device event event occurred.

event-modifier-state [Generic function]

Arguments: event

■ Returns an integer value that encodes the state of all the modifier keys on the keyboard. The mod-

ifier is returned as an integer with bits corresponding to the constants +shift-key+, +control-
key+, +meta-key+, +super-key+, and +hyper-key+. A bit value of 1 means the corre-

sponding shift key was pressed.

keyboard-event [Class]

■ The instantiable class that corresponds to any sort of keyboard event. This is a subclass of

device-event.
CLIM 2.2 User Guide 167

keyboard-event-key-name [Generic function]

Arguments: keyboard-event

■ Returns the name of the key that was pressed or released in a keyboard event. This will be a sym-

bol whose value is port-specific. Key names corresponding to the set of standard characters (such as

the alphanumerics) will be a symbol in the keyword package.

keyboard-event-character [Generic function]

Arguments: keyboard-event

■ Returns the character associated with the event keyboard-event, if there is any correspond-

ing character. (For example, shift keys will not have a corresponding character.)

key-press-event [Class]

■ The instantiable class that corresponds to a key press event. This is a subclass of keyboard-
event.

key-release-event [Class]

■ The instantiable class that corresponds to a key release event. This is a subclass of keyboard-
event.

pointer-event [Class]

■ The instantiable class that corresponds to any sort of pointer event. This is a subclass of

device-event.

pointer-event-x [Generic function]

Arguments: pointer-event

■ Returns the x position of the pointer at the time the event occurred, in the coordinate system of

the sheet that received the event.

pointer-event-y [Generic function]

Arguments: pointer-event

■ Returns the y position of the pointer at the time the event occurred, in the coordinate system of

the sheet that received the event.

pointer-button-event [Class]

■ The instantiable class that corresponds to any sort of pointer button event. This is a subclass of

pointer-event.

pointer-event-button [Generic function]

Arguments: pointer-button-event

■ Returns an integer identifying the button that was pressed or released when the pointer button

event pointer-button-event occurred. The value identifying the left button is the value of

+pointer-left-button+, that identifying the middle button is the value of +pointer-
middle-button+, and that identifying the right button is the value of +pointer-right-
button+.

pointer-button-press-event [Class]

■ The instantiable class that corresponds to a pointer button press event. This is a subclass of

pointer-button-event.
168 CLIM 2.2 User Guide

pointer-button-release-event [Class]

■ The instantiable class that corresponds to a pointer button release event. This is a subclass of

pointer-button-event.

pointer-motion-event [Class]

■ The instantiable class that corresponds to any sort of pointer motion event. This is a subclass of

pointer-event.

pointer-boundary-event [Class]

■ The instantiable class that corresponds to a pointer motion event that crosses some sort of sheet

boundary. This is a subclass of pointer-motion-event.

pointer-boundary-event-kind [Generic function]

Arguments: pointer-boundary-event

■ Returns the kind of boundary event, which will be one of :ancestor, :virtual, :infe-
rior, :nonlinear, :nonlinear-virtual, or nil. These event kinds correspond to the

detail members for X11 enter and exit events.

pointer-enter-event [Class]

■ The instantiable class that corresponds to the pointer entering a sheet's region. This is a subclass

of pointer-boundary-event.

pointer-exit-event [Class]

■ The instantiable class that corresponds to the pointer exiting a sheet's region. This is a subclass of

pointer-boundary-event.

8.7.9 Low level functions for CLIM presentation translators

Some applications may wish to deal directly with presentation translators, for example, if you are tracking

the pointer yourself and wish to locate sensitive presentations, or want to generate a list of applicable trans-

lators for a menu. The following functions are useful for finding and calling presentation translators directly.

find-presentation-translators [Function]

Arguments: from-type to-type command-table

■ Returns a list of all the translators in the command table command-table that translate from

from-type to to-type, without taking into account any type parameters or testers. frame
defaults to *application-frame*. from-type and to-type must not be presentation type

abbreviations.

■ Do not modify the list returned by find-presentation-translators.

find-applicable-translators [Function]

Arguments: presentation input-context frame window x y &key event
modifier-state for-menu fastp

■ Returns a list of translators that apply to presentation in the input context input-con-
text. Since input contexts can be nested, find-applicable-translators iterates over all

of contexts in input-context.

frame is the application frame. window, x, and y are the window the presentation is on, and

the x and y position of the pointer (respectively).
CLIM 2.2 User Guide 169

event (which defaults to nil) is a pointer button event, and may be supplied to further restrict

the set of applicable translators to only those whose gesture matches the pointer button event.

modifier-state (which defaults to the current modifier state for the window) may also be

supplied to restrict the set of applicable translators to only those who gesture matches the shift mask.

Only one of event or modifier-state may be supplied.

When for-menu is t (the default), this returns every possible translator, disregarding event
and modifier-state. When fastp is t, this will simply return t if there are any translators.

fastp defaults to nil.

presentation-matches-context-type [Function]

Arguments: presentation context-type frame window x y &key event
(modifier-state 0)

■ Returns a non-nil value if there are any translators that translate from presentation's type

to context-type. (There is no from-type argument because it is derived from presenta-
tion.) frame, window, x, y, event, and modifier-state are as for find-applicable-
translators.

If there are no applicable translators, presentation-matches-context-type will

return nil.

test-presentation-translator [Function]

Arguments: translator presentation context-type frame window x y &key
event (modifier-state 0) for-menu

■ Returns t if the translator translator applies to the presentation presentation in input

context type context-type. (There is no from-type argument because it is derived from pre-
sentation.)

frame is the application frame. window, x, and y are the window the presentation is on, and

the x and y position of the pointer (respectively).

event and modifier-state are, respectively, a pointer button event and a modifier state.

These are compared against the translator's gesture-name. event defaults to nil, and shift-
mask defaults to 0, meaning that no shift keys are held down. Only one of event or modifier-
state may be supplied.

If for-menu is t, the comparison against event and modifier-state is not done.

presentation, context-type, frame, window, x, y, and event are passed along to

the translator's tester if and when the tester is called.

If the translator is not applicable, test-presentation-translator will return nil.

test-presentation-translator is responsible for matching type parameters and call-

ing the translator's tester. Under some circumstances, test-presentation-translator
may also call the body of the translator to ensure that its value matches to-type.

call-presentation-translator [Function]

Arguments: translator presentation context-type frame event window x y

■ Calls the function that implements the body of translator on presentation's object, and

passes presentation, context-type, frame, event, window, x, and y to the body of the

translator as well.

frame, window, x, and y are as for find-applicable-translators. context-type
is the presentation type for the context that matched. event is the event corresponding to the user's

gesture.
170 CLIM 2.2 User Guide

The returned values are the same as the values returned by the body of the translator, which

should be the translated object and the translated type.

document-presentation-translator [Function]

Arguments: translator presentation context-type frame event window x y
&key (stream *standard-output*) documentation-type

■ Computes the documentation string for translator and outputs it to stream. presenta-
tion, context-type, frame, gesture, window, x, and y are as for find-applicable-
translators.

documentation-type should be either :normal or :pointer. When it is :pointer,

document-presentation-translator tries to generate the short form of pointer documen-

tation, otherwise it generates the normal form.

call-presentation-menu [Function]

Arguments: presentation input-context frame window x y &key (for-menu
t) label

■ Finds all the applicable translators for presentation in the input context input-context,

creates a menu that contains all of the translators, and pops up a menu from which the user can choose

a translator. After the translator is chosen, it is called and the values are returned to the appropriate

call to with-input-context.

frame, window, x, and y are as for find-applicable-translators. for-menu,

which defaults to t, is used to decide which presentation translators go in the menu (their :menu
option must match for-menu). label is used as a label for the menu, and defaults to nil, mean-

ing the menu will not be labelled.

The following functions are useful for finding an application presentation in an output history.

find-innermost-applicable-presentation [Function]

Arguments: input-context stream x y
&key (frame *application-frame*) modifier-state event

■ Given an input context input-context, an output recording window stream window, and X

and Y positions x and y, find-innermost-applicable-presentation returns the inner-

most presentation that matches the innermost input context.

frame is the application frame. modifier-state is a mask that describes what shift keys are

held down on the keyboard, and defaults to the window's current modifier state. event is a pointer

button event.

throw-highlighted-presentation [Function]

Arguments: presentation input-context button-press-event

■ Calls the applicable translator for the presentation, input-context, and button-
press-event (that is, the one corresponding to the user clicking a pointer button while over the pre-

sentation). If an applicable translator is found, this binds variables to the object and the presentation

type returned from the translator and throws back to the call to with-input-context that estab-

lish the matching input context. *application-frame* should be bound to the current applica-

tion frame when you call throw-highlighted-presentation.
CLIM 2.2 User Guide 171

highlight-applicable-presentation [Function]

Arguments: frame stream input-context &optional (prefer-pointer-window
t)

■ This is the input wait handler used by with-input-context. It is responsible for locating

the innermost applicable presentation, unhighlighting presentations that are not applicable, and high-

lighting the presentation that is applicable.

frame, stream, and input-context are as for find-innermost-applicable-
presentation.

set-highlighted-presentation [Function]

Arguments: stream presentation &optional (prefer-pointer-window t)

■ Highlight the presentation presentation on stream. If presentation is nil, any high-

lighted presentations are unhighlighted.

If prefer-pointer-window is t (the default), this sets the highlighted presentation for the

window that is located under the pointer. Otherwise it sets the highlighted presentation for the win-

dow stream.

unhighlight-highlighted-presentation [Function]

Arguments: stream &optional (prefer-pointer-window t)

■ Unhighlight any highlighted presentations on stream.

■ Most applications will never need to use any of these functions.
172 CLIM 2.2 User Guide

Chapter 9 Defining application
frames in CLIM

9.1 Concepts of CLIM application frames

Application frames (or simply, frames) are the central abstraction defined by CLIM for presenting an appli-

cation's user interface. A frame contains a hierarchy of panes, which can include CLIM stream panes and

gadgets.

The look and feel of an application frame is managed by a frame manager. The frame manager is respon-

sible for realizing the concrete, window system dependent gadget that corresponds to each abstract gadget

(the abstract gadget might be a CLIM slider, for example, and its concrete gadget is a real Motif slider). It

is also responsible for the look and feel of menus, dialogs, pointer documentation, and so forth. The use of

a frame manager allows CLIM applications to support multiple looks and feels, which is very important

when porting an application from one environment to another.

Application frames provide support for a standard interaction processing loop, like the Lisp read-eval-

print loop. You are required to write only the code that implements the frame-specific commands and output

display functions. A key aspect of this interaction processing loop is the separation of the specification of

the frame's commands from the specification of the end-user interaction style.

The standard interaction loop consists of reading an input sentence (the command and all of its operands),

executing the command, and updating the displayed information as appropriate. Command execution and

display will not occur simultaneously, so user-defined functions need not cope with multiprocessing.

Note that this definition of the standard interaction loop does not constrain the interaction style to com-

mand-line interfaces. The input sentence may be entered via single keystrokes, pointer input, menu selec-

tion, or by typing full command lines. CLIM allows the application implementor to choose what subset of

approaches will be applicable for each individual command.

9.2 Defining CLIM application frames

define-application-frame defines CLIM application frames. Application frames are represented

by CLOS classes which inherit from standard-application-frame. You can specify a name for

the application class, the superclasses (if there are any beyond standard-application-frame), the

slots of the application class, and options.

The following operators are used to define and instantiate CLIM application frames.

define-application-frame [Macro]

Arguments: name superclasses slots &rest options

■ Defines an application frame. You can specify a name for the application class, the super-
classes (if any), the slots of the application class, and options.
CLIM 2.2 User Guide 173

■ define-application-frame defines a class with the following characteristics:

• inherits some behavior and slots from the class standard-application-frame;

• inherits other behavior and slots from any other superclasses which you specify explicitly;

• has other slots, as explicitly specified by slots;

• none of the arguments is evaluated.

The arguments are:

name

A symbol naming the new frame and class.

superclasses

A list of superclasses from which the new class should inherit, as in defclass. When super-
classes is nil, it behaves as though a superclass of standard-application-frame
was supplied. If you do specify superclasses to inherit from, you must include standard-
application-frame explicitly if none of the superclasses inherits from standard-
application-frame.

slots

is a list of slot specifiers, as in defclass. Each instance of the frame will have slots as specified

by these slot specifiers. These slots will typically hold any per-instance frame state.

options

allows you to customize the initial values of slots in either your specified superclasses, or in

the application frame. The options are as follows. Note that you must supply :panes (and

optionally :layouts) or :pane. There is no default for these options. All the remaining

options have defaults.

:panes pane-descriptions

Specifies the application's panes. There is no default for this option. The syntax of pane-
descriptions is given below in section 9.2.3. If you use this option, you might use the

:layouts option as well. If you do not specify :layouts, a default is used. If you use

:panes, you should not specify a value for :pane.

:layouts layout

Specifies the layout of the panes specified by the :panes option. The syntax of layout
is given below in section 9.2.5.

:pane form

Specifies the application's panes. form is a Lisp form that creates all of the panes of the

application. The syntax of form is the same as the syntax of a :layouts description.

You should not use this option and the :panes option. Instead, use one or the other.

:top-level top-level

Allows you to specify the main loop for your application. The top level function defaults

to default-frame-top-level, which is adequate for most applications. top-
level is a list whose first element is the name of a function to be called to execute the top

level loop. The function should take at least one argument, the frame. The rest of the list

consists of additional arguments to be passed to the function. The default function is

default-frame-top-level. (Note that you can use the :prompt keyword of

default-frame-top-level to control application frame prompts in the interactor.)

:command-table name-and-options

Allows you to specify a particular command table for the application.
174 CLIM 2.2 User Guide

name-and-options is a list consisting of the name of the application's command table

followed by some keyword-value pairs. The keywords can be :inherit-from or

:menu (which are as in define-command-table). The default is to create a command

table with the same name as the application.

:disabled-commands commands

Allows you to specify a particular set of initially disabled commands for the application.

The default is nil.

:command-definer value

Where value is either nil, t, or another symbol. When it is nil, no command-defining

macro is defined. When it is t, a command-defining macro is defined, whose name is of the

form define-name-command. When it is another symbol, the symbol names the com-

mand-defining macro. The default is t.

:menu-bar boolean

Specifies whether or not CLIM should maintain a menu bar for the application. The default

is t.

:icon &key name pixmap clipping-mask

name should be a string, pixmap should be a pattern (not, despite its name, a pixmap

object), and clipping-mask should be a pattern.

:geometry geometry

If supplied, geometry specifies the default geometry of the frame (that is, its position and

size). geometry is a property list whose properties may be :left, :top, :right,

:bottom, :width, and :height. These properties will be used unless explicitly over-

ridden in the call to make-application-frame.

:default-initargs initargs

Identical to the :default-initargs for defclass.

Some examples
Recall we define *test-frame* at the beginning of this manual (section 2.1) to use in the various exam-

ples. Here again is the define-application-frame form from that definition:

(define-application-frame test ()
 ()
 (:panes
 (display :application))
 (:layouts
 (default display)))

This is about as simple as it can get -- no superclasses (so the new frame inherits from standard-
application-frame only) and no slots, a :panes/:layouts combination and not much else. Note

that after defining the frame, we do:

(define-test-command (com-quit :menu t) ()
 (frame-exit *application-frame*))

define-test-command names the command definer for test since we did not specify a value for the

:command-definer option. By default, therefore, define-name-command is the command definer.

Another example application defined in chapter 2 is for the calendar application:
CLIM 2.2 User Guide 175

(define-application-frame calendar ()
 ((selected-date :accessor calendar-selected-date)
 (region-end :accessor calendar-region-end)
 (months :accessor calendar-months))
 (:command-table (calendar
 :inherit-from (calendar-file-commands
 calendar-edit-commands)
 :menu (("File" :menu calendar-file-commands

:mnemonic #ƒ :documentation "File Commands")
 ("Edit" :menu calendar-edit-commands

:mnemonic #\E :documentation "Edit Commands"))))
 (:pointer-documentation t)
 (:panes
 (display :application
 :incremental-redisplay ’(t :check-overlapping nil)
 :display-function ’draw-calendar
 :text-cursor nil
 :width :compute :height :compute
 :end-of-page-action :allow
 :end-of-line-action :allow)
 (dialog :accept-values
 :display-function
 ‘(accept-values-pane-displayer :displayer ,#’display-dialog)))
 (:layouts
 (:default
 (vertically ()
 dialog
 display))))

Again, no superclasses, but lots of slots, more complicated panes, and then a layout. Both these examples

are discussed in chapter 2, where they are first defined. We mention them here to show what such things

look like.

More application-frame functions and utilities

standard-application-frame [Class]

■ The standard CLIM application frame class.

■ define-application-frame arranges to inherit from this class if you do not supply an

superclasses. If you do specify superclasses to inherit from, you must include standard-
application-frame explicitly if none of the superclasses inherits from standard-
application-frame.

application-frame-p [Function]

Arguments: object

■ Returns t if and only if object is of type application-frame.
176 CLIM 2.2 User Guide

make-application-frame [Function]

Arguments: frame-name &key frame-class pretty-name frame-manager
calling-frame left top right bottom height width
user-specified-position-p user-specified-size-p
&allow-other-keys

■ Makes an instance of the application frame of type frame-class. In addition to the keyword

arguments listed, you can also supply CLOS initargs for :frame-class. The keyword arguments

not handled by make-application-frame are passed as additional arguments to make-
instance.

frame-name

A symbol which is the name argument to define-application-frame.

frame-class

The class to instantiate, defaults to frame-name. For special purposes you can supply a subclass

of frame-name.

pretty-name

A string that is used as a title. It defaults to a prettified version of frame-name.

frame-manager

The frame manager for the frame. See the function find-frame-manager. The default is to

use the default frame manager on the default port. A typical value is:

:frame-manager (find-frame-manager

 :server-path ’(:motif :display "<disp>:0")

<disp> is the name of the desired display.

calling-frame

In window systems supporting a hierarchy of top level windows, the new frame is created as a

child of calling-frame. This is important in the case of modal dialogs to ensure that the new

frame can accept input. For example, if within in an accepting-values dialog a new frame

is launched, that frame should be created with the accepting-values frame as calling-
frame. This is achieved by specifying *application-frame* as calling-frame.

left

top

right

bottom

The coordinates of the left, top, right, and bottom edges of the frame, in device units. These default

to the full size of the root window.

height

width

The size of the frame in device units. You can also use coordinates to specify the size of the frame.

user-specified-position-p

user-specified-size-p

These arguments tell the Window Manager to use the position or size specified by the arguments

rather than determining a position or size itself. user-specified-position-p defaults to

nil unless top and left are specified, in which case it defaults to t. user-specified-
size-p defaults to nil unless height and width are specified in which case it defaults to t.
CLIM 2.2 User Guide 177

find-application-frame [Function]

Arguments: frame-name &rest initargs &key (create t) (activate t) (own-
process *multiprocessing-p*) port frame-manager frame-class
&allow-other-keys

■ Calling this function is similar to calling make-application-frame, then calling run-
frame-top-level on the result.

If create is t, a new frame will be created if one does not already exist. If create is

:force, a new frame will be created regardless of whether there is one already.

If activate is t, the frame's top level function will be invoked. If own-process is t (the

default in Allegro CLIM), the frame will be invoked in its own process.

port and frame-manager can be used to name the parent of the frame. frame-class is

as for make-application-frame. The rest of the initargs are passed on to make-
application-frame.

9.2.1 Panes in CLIM

CLIM panes are stream panes similar to the gadgets or widgets of other toolkits. They can be used by appli-

cation programmers to compose the top-level user interface of their applications, as well as auxiliary com-

ponents such as menus and dialogs. The application programmer provides an abstract specification of the

pane hierarchy, which CLIM uses in conjunction with user preferences and other factors to select a specific

look and feel for the application. In many environments a CLIM application can use the facilities of the host

window system toolkit via a set of adaptive panes, allowing a portable CLIM application to take on the look

and feel of a native application user interface.

Panes are rectangular objects that are implemented as special sheet classes. An application will typically

construct a tree of panes that divide up the screen space allocated to the application frame. The various

CLIM pane types can be characterized by whether they have children panes or not: panes that can have other

panes as children are called composite panes, and those that don't are called leaf panes. Composite panes

are used to provide a mechanism for spatially organizing (laying out) other panes. Leaf panes implement

gadgets that have a particular appearance and react to user input by invoking application code. Another kind

of leaf pane provides an area of the application's screen real estate that can be used by the application to

present application specific information. CLIM provides a number of these application pane types that

allow the application to use CLIM's graphics and extended stream facilities.

Abstract panes are panes that are defined only in terms of their programmer interface, or behavior. The

protocol for an abstract pane (that is, the specified set of initialization options, accessors, and callbacks) is

designed to specify the pane in terms of its overall purpose, rather then in terms of its specific appearance

or particular interactive details. The purpose of this abstract definition is to allow multiple implementations

of the abstract pane, each defining its own specific look and feel. CLIM can then select the appropriate pane

implementation based on factors outside the control of the application, such as user preferences or the look

and feel of the host operating environment. A subset of the abstract panes, the adaptive panes, have been

defined to integrate well across all CLIM operating platforms. These include buttons, sliders, scroll bars,

and so forth.
178 CLIM 2.2 User Guide

9.2.2 Basic pane construction

Applications typically define the hierarchy of panes used in their frames using the :pane or :panes
options of define-application-frame. These options generate the body of methods on functions

that are invoked when the frame is being adopted into a particular frame manager, so the frame manager can

select the specific implementations of the abstract panes.

There are two basic interfaces to constructing a pane: make-pane of an abstract pane class name, or

make-instance of a concrete pane class. The former approach is generally preferable, since it results in

more portable code. However, in some cases the programmer may wish to instantiate panes of a specific

class (such as an hbox-pane or a vbox-pane). In this case, using make-instance directly circum-

vents the abstract pane selection mechanism. However, the make-instance approach requires the appli-

cation programmer to know the name of the specific pane implementation class that is desired, and so is

inherently less portable. By convention, all of the concrete pane class names, including those of the imple-

mentations of abstract pane protocol specifications, end in ‘-pane’.

Using make-pane instead of make-instance invokes the look and feel realization process to select

and construct a pane. Normally this process is implemented by the frame manager, but it is possible for other

realizers to implement this process. make-pane is typically invoked using an abstract pane class name,

which by convention is a symbol in the CLIM package that doesn't include the ‘-pane’ suffix. (This naming

convention distinguishes the names of the abstract pane protocols from the names of classes that implement

them.) Programmers, however, are allowed to pass any pane class name to make-pane in which case the

frame manager will generally instantiate that specific class.

See the functions make-pane and make-clim-stream-pane.

9.2.3 Using the :panes option to clim:define-application-frame

The :panes option to define-application-frame is used to describe the panes used by the appli-

cation frame. It takes a list of pane-descriptions. Each pane-description can be one of two

possible formats:

• A list consisting of a pane-name (which is a symbol), a pane-type, and pane-options,

which are keyword-value pairs. pane-options is evaluated at run time.

• A list consisting of a pane-name (which is a symbol), followed by a form that is evaluated at

run time to create the pane. See make-clim-stream-pane and make-pane.

The pane-types are:

:application

Application panes are for the display of application-generated output. See the class

application-pane and the macro make-clim-application-pane.

:interactor

Interactor panes provide a place for the user to do interactive input and output. See the class

interactor-pane and the macro make-clim-interactor-pane.

:accept-values

Pane for the display of an accepting-values dialog. See the class accept-values-
pane and section 13.4 Using an :accept-values pane in a CLIM application frame.
CLIM 2.2 User Guide 179

:pointer-documentation

Pane for pointer documentation. If such a pane is specified, then when the pointer moves over dif-

ferent areas of the frame, this pane displays documentation of the effect of clicking the pointer

buttons.

See the class pointer-documentation-pane.

:title

Title panes are used for displaying the title of the application. The default title is a prettified ver-

sion of the name of the application frame. This will be handle by the window manager, so you

need not include a title pane.

See the class title-pane.

:command-menu

Command menu panes are used to hold a menu of application commands. See the class

command-menu-pane. This will be handle by the menu bar, so you need not include a com-

mand menu pane unless you require other command menus.

:menu-bar

Menu-bar panes use the toolkit menu bar to display a command menu. The command-table option

defaults to the command-table of the frame. See the class menu-bar.

The pane-options usable by all pane types are:

The space requirement specs, :width, :height, :min-width, :min-height, :max-
width, and :max-height.

These options control the space requirement parameters for laying out the pane. The :width and

:height options specify the preferred horizontal and vertical sizes. The :max-width and

:max-height options specify the maximum amount of space that may be consumed by the

pane, and give CLIM's pane layout engine permission to grow the pane beyond the preferred size.

The :min-width and :min-height options specify the minimum amount of space that may

be consumed by the pane, and give CLIM's pane layout engine permission to shrink the pane

below the preferred size.

If unspecified, :max-width and :max-height default to +fill+ and :min-width and

:min-height default to 0.

:max-width, :min-width, :max-height, and :min-height can also be specified as a

relative size by supplying a list of the form (number :relative). In this case, the number

indicates the number of device units that the pane is willing to stretch or shrink.

The values of these options are specified in the same way as the :x-spacing and :y-spac-
ing options to formatting-table. (Note that :character and :line may only be used

on those panes that display text, such as a clim-stream-pane or a label-pane.)

:background, :foreground

Initial values for medium-foreground and medium-background for the pane.

:text-style text-style

Specifies a text style to use in the pane. The default depends on the pane type.

:borders

Controls whether borders are drawn around the pane (t or nil). The default is t.

:scroll-bars scroll-bar-spec

A scroll-bar-spec can be :both (the default for :application panes), :horizontal,

:vertical, or nil. The pane will have only those scroll bars that were specified. In addition
180 CLIM 2.2 User Guide

the :scroll-bars argument can be a cons, the car of which is treated at the non-cons argument

and the cdr of which is a list of keyword argument pairs to be used as options to the scroller-pane

(see the scrolling macro).

:display-after-commands

One of t, nil, or :no-clear. If t, the print part of the read-eval-print loop runs the display

function; this is the default for most pane types. If nil, you are responsible for implementing the

display after commands.

:no-clear behaves the same as t, with the following change. If you have not specified

:incremental-redisplay t, then the pane is normally cleared before the display function

is called. However, if you specify :display-after-commands :no-clear, then the pane

is not cleared before the display function is called.

Note that :display-after-commands is retained primarily for compatibility with CLIM

1.1. It has the same functionality as using the :display-time option to make-clim-
stream-pane.

:display-function display-spec

Where display-spec is either the name of a function or a list whose first element is the name

of a function. The function is to be applied to the application frame, the pane, and the rest of dis-
play-spec if it was a list when the pane is to be redisplayed.

One example of a predefined display function is display-command-menu.

:display-string string

(for :title panes only) The string to display. The default is the frame's pretty-name.

:incremental-redisplay boolean If t, CLIM initially runs the display function inside

a updating-output form, and subsequent calls to redisplay-frame-pane will simply

use redisplay. The default is nil.

:incremental-redisplay

This option, which defaults to nil, can either be a boolean or a list consisting of a boolean fol-

lowed by keyword option pairs. The only option currently supported is :check-overlapping
which takes a boolean value and defaults to t. Specifying this option as nil improves perfor-

mance but should only be used where the output produced by the display function does not contain

overlapping output. The :incremental-redisplay option is always used in conjunction

with a pane display function (specified with :display-function).

:label

A string to be used as a label for the pane, or nil (the default).

:end-of-line-action, :end-of-page-action

These specify the initial values of the corresponding attributes.

:initial-cursor-visibility

:offmeans make the cursor visible if the window is waiting for input. :onmeans make it visible

now. The default is :inactivewhich means the cursor is never visible. The default is :off for

:interactor and :accept-values panes.

:output-record

Supply this if you want a different output history mechanism than the default.

:draw and :record

Specifies the initial state of drawing and output recording.

:default-view

Specifies the view object to use for the stream's default view.
CLIM 2.2 User Guide 181

:text-margin

Text margin to use if stream-text-margin isn't set. This defaults to the width of the view-

port.

:vertical-spacing

Amount of extra space between text lines.

9.2.4 CLIM stream panes

This section describes the basic CLIM panes classes, and, in particular, the concept of a CLIM stream pane.

pane [Class]

■ The protocol class that corresponds to a pane, a subclass of sheet. A pane is a special kind of

sheet that implements the pane protocols, including the layout protocols.

panep [Function]

Arguments: object

■ Returns t if object is a pane, otherwise returns nil.

basic-pane [Class]

■ The basic class on which all CLIM panes are built, a subclass of pane.

pane-frame [Generic function]

Arguments: pane

■ Returns the frame that owns the pane. You can call pane-frame on any pane in a frame's pane

hierarchy, but it can only be invoked on active panes, that is, those panes that are currently adopted

into the frame's pane hierarchy.

clim-stream-pane [Class]

■ This class implements a pane that supports the CLIM graphics, extended input and output, and

output recording protocols. Most CLIM stream panes will be subclasses of this class.

interactor-pane [Class]

■ The pane class that is used to implement interactor panes (the :interactor type above). The

default method for frame-standard-input will return the first pane of this type.

For interactor-pane, the default for :display-time is nil and the default for

:scroll-bars is :vertical.

application-pane [Class]

■ The pane class that is used to implement application panes (the :application type above).

The default method for frame-standard-output will return the first pane of this type.

For application-pane, the default for :display-time is :command-loop and the

default for :scroll-bars is t.

command-menu-pane [Class]

■ The pane class that is used to implement command menu panes that are not menu bars (the

:command-menu type above). The default display function for panes of this type is display-
command-menu.
182 CLIM 2.2 User Guide

For command-menu-pane, the default for :display-time is :command-loop, the

default for :incremental-redisplay is t, and the default for :scroll-bars is t.

title-pane [Class]

■ The pane class that is used to implement a title pane (the :title type above). The default display

function for panes of this type is display-title.

For title-pane, the default for :display-time is t and the default for :scroll-bars
is nil.

pointer-documentation-pane [Class]

■ The pane class that is used to implement the pointer documentation pane.

For pointer-documentation-pane, the default for :display-time is nil and the

default for :scroll-bars is nil.

Making CLIM Stream Panes
Most CLIM stream panes will contain more information than can be displayed in the allocated space, so

scroll bars are nearly always desirable. CLIM therefore provides a convenient form for creating composite

panes that include the CLIM stream pane, scroll bars, labels, and so forth.

make-clim-stream-pane [Function]

Arguments: &rest options &key type label label-alignment scroll-bars
borders display-after-commands display-time &allow-other-
keys

■ Creates a pane of type type, which defaults to clim-stream-pane.

If label is supplied, it is a string used to label the pane. label-alignment is as for the

labelling macro.

scroll-bars may be t to indicate that both vertical and horizontal scroll bars should be

included, :vertical (the default) to indicate that vertical scroll bars should be included, or :hor-
izontal to indicate that horizontal scroll bars should be included. In addition the :scroll-bars
argument can be a cons, the car of which is treated at the non-cons argument and the cdr of which is

a list of keyword argument pairs to be used as options to the scroller-pane (see the scrolling
macro).

If borders is true, the default, a border is drawn around the pane.

display-after-commands is used to initialize the :display-time property of the pane.

It may be t (for :display-time :command-loop), :no-clear (for :display-time
:no-clear), or nil (for :display-time nil). See 9.2.3 Using the :panes option to
clim:define-application-frame. You may only supply on of :display-time or :display-
after-commands.

display-time is one of :command-loop (equivalent to :display-after-commands
t), :no-clear (equivalent to :display-after-commands :no-clear) or nil (equivalent

to :display-after-commands nil).

The other options may include all of the valid CLIM stream pane options.

make-clim-interactor-pane [Function]

Arguments: &rest options

■ Like make-clim-stream-pane, except that the type is forced to be interactor-pane.
CLIM 2.2 User Guide 183

make-clim-application-pane [Function]

Arguments: &rest options

■ Like make-clim-stream-pane, except that the type is forced to be application-pane.

9.2.5 Using the :layouts Option to clim:define-application-frame

A layout is an arrangement of panes within the application-frame's top-level window. An application may

have many layouts or it may have only one layout that remains constant for the life of the program. If you

do not supply any layouts, CLIM will construct a default layout for the application.

CLIM's layout protocol is triggered by calling layout-frame, which is called when a frame is

adopted by or resized by a frame manager.

CLIM uses a two pass algorithm to lay out a pane hierarchy. In the first pass (called space composition),

the top level pane is asked how much space it requires. This may in turn lead to same the question being

asked recursively of all the panes in the hierarchy, with the answers being composed to produce the top-

level pane's answer. Each pane answers the query by returning a space requirement (or space-
requirement) object, which specifies the pane's desired width and height as well as its willingness to

shrink or grow along its width and height.

In the second pass (called space allocation), the frame manager attempts to obtain the required amount

of space from the host window system. The top-level pane is allocated the space that is actually available.

Each pane, in turn, allocates space recursively to each of its descendants in the hierarchy according to the

pane's rules of composition.

The space requirement
For most types of panes, you can indicate the space requirements of the pane at creation time by using the

space requirement options (described above). For example, application panes are used to display applica-

tion-specific information, so the application can determine how much space should normally be given to

them.

Other pane types automatically calculate how much space they need based on the information they need

to display. For example, label panes automatically calculate their space requirement based on the text they

need to display.

A composite pane calculates its space requirement based on the requirements of its children and its own

particular rule for arranging them. For example, a pane that arranges its children in a vertical stack would

return as its desired height the sum of the heights of its children. Note however that a composite is not

required by the layout protocol to respect the space requests of its children; in fact, composite panes aren't

even required to ask their children.

Space requirements are expressed for each of the two dimensions as a preferred size, a minimum size

below which the pane cannot be shrunk, and a maximum size above which the pane cannot be grown. (The

minimum and maximum sizes can also be specified as relative amounts.) All sizes are specified as a real

number indicating the number of device units (such as pixels).

make-space-requirement [Function]

Arguments: &key (width 0) (max-width width) (min-width width)
(height 0) (max-height height) (min-height height)

■ Constructs a space requirement object with the given characteristics, :width, :height, and so

on.
184 CLIM 2.2 User Guide

space-requirement-width [Generic function]

Arguments: space-req

space-requirement-min-width [Generic function]

Arguments: space-req

space-requirement-max-width [Generic function]

Arguments: space-req

space-requirement-height [Generic function]

Arguments: space-req

space-requirement-min-height [Generic function]

Arguments: space-req

space-requirement-max-height [Generic function]

Arguments: space-req

■ These functions read the components of the space requirement space-req.

space-requirement-components [Generic function]

Arguments: space-req

■ Returns the components of the space requirement space-req as six values, the width, minimum

width, maximum width, height, minimum height, and maximum height.

space-requirement-combine [Function]

Arguments: function sr1 sr2

■ Returns a new space requirement each of whose components is the result of applying the function

function to each the components of the two space requirements sr1 and sr2.

■ function is a function of two arguments, both of which are real numbers. It has dynamic extent.

space-requirement+ [Function]

Arguments: sr1 sr2

■ Returns a new space whose components are the sum of each of the components of sr1 and sr2.

This could be implemented as follows:

(defun space-requirement+ (sr1 sr2)

 (clim:space-requirement-combine #'+ sr1 sr2))

space-requirement+* [Function]

Arguments: space-req &key width min-width max-width height min-height
max-height

■ Returns a new space requirement whose components are the sum of each of the components of

space-req added to the appropriate keyword argument (for example, the width component of

space-req is added to width).

■ This is a more efficient, spread version of space-requirement+.
CLIM 2.2 User Guide 185

compose-space [Generic function]

Arguments: pane &key width height

■ During the space composition pass, a composite pane will typically ask each of its children how

much space it requires by calling compose-space. They answer by returning space-
requirement objects. The composite will then form its own space requirement by composing the

space requirements of its children according to its own rules for laying out its children.

The value returned by compose-space is a space requirement object that represents how

much space the pane pane requires.

width and height are real numbers that the compose-space method for a pane may use

as recommended values for the width and height of the pane. These are used to drive top-down lay-

out.

allocate-space [Generic function]

Arguments: pane width height

■ During the space allocation pass, a composite pane will arrange its children within the available

space and allocate space to them according to their space requirements and its own composition rules

by calling allocate-space on each of the child panes. width and height are the width and

height of pane in device units.

change-space-requirements [Generic function]

Arguments: pane &key resize-frame &rest space-req-keys

■ This function can be invoked to indicate that the space requirements for pane have changed. Any

of the options that applied to the pane at creation time can be passed into this function as well.

resize-frame determines whether the frame should be resized to accommodate the new

space requirement of the hierarchy. If resize-frame is t, then layout-framewill be invoked

on the frame. If resize-frame is nil, then the frame may or may not get resized depending on

the pane hierarchy and the :resize-frame option that was supplied to define-
application-frame.

The layout
As the application is running, the current layout may be changed to any of the layouts described in the

:layouts option of the frame definition. See (setf frame-current-layout) and frame-
current-layout.

The :layouts option specifies and names the layouts of the application. A layout typically consists of

rows, columns, and tables of panes, or more complicated nestings of rows, columns and tables. The value

of the :layouts option is a list of layout descriptions. Each layout description is a two element list con-

sisting of a symbol, which names the layout, and a corresponding layout-spec.

A layout-spec is a simply a form consisting of the various layout macros that constructs a pane.

A size-spec can be :fill, :compute, or a real number between zero and one. :fill
means to use the remaining available space.

:compute means to run the :display-function to compute the size. Note that the dis-

play function is run at frame-creation time, so it must be able to compute the size correctly at that

time.

A real number (between zero and one) is the fraction of the available space to use along the major

axis.

 The following macros provide layout for other panes in CLIM.
186 CLIM 2.2 User Guide

+fill+ [Constant]

■ This constant can be used as a value to any of the relative size options in the following macros. It

indicates that pane's willingness to adjust an arbitrary amount in the specified direction.

horizontally [Macro]

Arguments: (&rest options &key spacing &allow-other-keys)
&body contents

■ The horizontallymacro lays out one or more child panes horizontally, from left to right. The

horizontally macro serves as the usual interface for creating an hbox-pane.

spacing specifies how much space should be left between each child pane. options may

include other pane initargs, such as space requirement options.

This macro creates a pane of class hbox-pane. It does not create any corresponding concrete

pane on the display server; CLIM handles this sort of layout itself.

contents is one or more forms that produce the child panes. Each form in contents is of

the form:

• A pane. The pane is inserted at this point and its space requirements are used to compute the

size.

• A number. The specified number of device units should be allocated at this point.

• The symbol :fill. This means that an arbitrary amount of space can be absorbed at this

point in the layout.

• A list whose first element is a number and whose second element evaluates to a pane. If the

number is less than 1, then it means that that fraction of excess space or deficit should be

allocated to the pane. If the number is greater than or equal to 1, then that many device units

are allocated to the pane. For example:

(clim:horizontally ()

 (1/3 (clim:make-pane ’label-button-pane))

 (2/3 (clim:make-pane ’label-button-pane)))

would create a horizontal stack of two label button panes. The first pane takes one-third of the

space, then second takes two-thirds of the space.

vertically [Macro]

Arguments: (&rest options &key spacing &allow-other-keys) &body
contents

■ The vertically macro lays out one or more child panes vertically, from top to bottom. The

vertically macro serves as the usual interface for creating a vbox-pane.

The arguments to vertically are exactly the same as for the horizontally macro.

This macro creates a pane of class vbox-pane. It does not create any corresponding concrete

pane on the display server; CLIM handles this sort of layout itself.

For example, the following will lay out its three children in a vertical stack, and the size of the

stack will be determined from the children.

(clim:vertically ()

 (clim:make-pane ’push-button)

 (clim:make-pane ’push-button)

 (clim:make-pane ’toggle-button))
CLIM 2.2 User Guide 187

tabling [Macro]

Arguments: (&rest options) &body contents

■ The tabling macro lays out its child panes in a two-dimensional table arrangement. con-
tents is a collection of elements, specified serially. Each element is itself specified by a list. For

example,

(clim:tabling ()

 ((clim:make-pane ’push-button :text "Red")

 (clim:make-pane ’push-button :text "Green")

 (clim:make-pane ’push-button :text "Blue"))

 ((clim:make-pane ’push-button :text "Intensity")

 (clim:make-pane ’push-button :text "Hue")

 (clim:make-pane ’push-button :text "Saturation")))

■ This macro creates a pane of class table-pane. It does not create any corresponding concrete

pane on the display server; CLIM handles this sort of layout itself.

outlining [Macro]

Arguments: (&rest options &key thickness &allow-other-keys) &body
contents

■ The outlining layout macro puts an outlined border of the specified thickness around a single

child pane. contents is a form that produces a single pane.

options may include other pane initargs, such as space requirement options, medium options

(:foreground, and so on), and so forth.

spacing [Macro]

Arguments: (&rest options &key thickness background &allow-other-keys)
&body contents

■ The spacing reserves some margin space around a single child pane. thickness specifies

the amount of space, and background specifies the ink to be used as the panes background (that

is, the color of the margin space). contents is a form that produces a single pane.

options may include other pane initargs, such as space requirement options, medium options

(:foreground, and so on), and so forth.

labelling [Macro]

Arguments: (&rest options &key label (label-alignment :top)
 &allow-other-keys) &body contents

■ Creates a vertical stack consisting of two panes. One pane contains the specified label, which is

a string. The other pane is specified by contents.

options may include other pane initargs, such as space requirement options, medium options

(:foreground, and so on), and so forth.

scrolling [Macro]

Arguments: (&rest options) &body contents

■ Creates a composite pane that allows the single child specified by contents to be scrolled.

options may include a :scroll-bar option. The value of this option may be t (the default),

which indicates that both horizontal and vertical scroll bars should be created; :vertical, which

indicates that only a vertical scroll bar should be created; or :horizontal, which indicates that

only a horizontal scroll bar should be created. The following options are also supported:
188 CLIM 2.2 User Guide

:drag-scroll

If non-nil scrolling of the pane takes place as the scroll-bar is moved by the user. If nil,

the pane is scrolled only after the scroll-bar is released by the user.

:vertical-line-scroll-amount

:horizontal-line-scroll-amount

Controls the distance the contents will scroll when the user activates the arrow at the end of

the scroll bar.

:vertical-page-scroll-amount

:horizontal-page-scroll-amount

Controls the distance the contents will scroll when the user activates the scroll bar adjacent

to the scroll bar slug. If the argument is an integer greater than 1 it represents the number

of pixels to be scrolled. If it is a number less than or equal to 1 it represents the fraction of

the viewport size to be scrolled.

The pane created by the scrolling macro will include a scroller pane that has as children the

scroll bars and a viewport pane. The viewport of a pane is the portion of the window's drawing plane

that is currently visible to the user. The viewport has as its child the specified contents.

This macro creates a scroll bar.

For example, the following creates a CLIM interactor pane with both vertical and horizontal

scroll bars; the entire composite pane is surrounded by a thin amount of whitespace and a thin border.

(clim:outlining (:thickness 1)

 (clim:spacing (:thickness 1)

 (clim:scrolling (:scroll-bars :both)

 (clim:make-pane ’clim:interactor-pane

 :height 500 :width 600))))

The following functions return the viewport of a pane, the viewport's region, and scroll the pane. These

are low-level functions; usually, you should use window-set-viewport-position to do program-

matic scrolling.

pane-viewport [Generic function]

Arguments: pane

■ If the pane pane is part of a scroller pane, this returns the viewport pane for pane. Otherwise it

returns nil.

pane-viewport-region [Generic function]

Arguments: pane

■ If the pane pane is part of a scroller pane, this returns the region of the pane's viewport. Otherwise

it returns nil.

scroll-extent [Generic function]

Arguments: pane x y

■ If the pane pane is part of a scroller pane, this scrolls the pane in its viewport so that the position

(x,y) of pane is at the upper-left corner of the viewport. Otherwise, it does nothing.
CLIM 2.2 User Guide 189

scroll-bar-size [Generic function]

Arguments: scroll-bar

■ Returns the size in pixels of the scroll-bar's slug. This can be setf'd to change the size of

a scroll-bar's slug

note-viewport-position-changed [Generic function]

Arguments: frame pane

■ This function is called when the position of pane’s viewport is changed. frame is

(pane-frame pane)

■ Applications can specialize on the frame argument to implement application-specific scrolling

behavior.

9.2.6 Examples of the :panes and :layouts options to clim:define-
application-frame

Here are some examples of how to use the :panes and :layouts options of define-
application-frame to describe the appearance of your application.

We begin by showing an example of a CLIM frame with a simple layout, a single column of panes. Note

that we use a :command-menu pane in this application instead of the more common menu bar. The com-

mand menus pane is allocated only enough space to display its contents, while the remaining space is

divided among the other types of panes equally.

(clim:define-application-frame graphics-demo
 ()
 ()
 (:menu-bar nil)
 (:panes
 (commands :command-menu)
 (demo :application)
 (explanation :application :scroll-bars nil))
 (:layouts
 (main (clim:vertically () commands demo explanation))))
190 CLIM 2.2 User Guide

Figure 9.2. The default layout for the graphic-demo example
when no explicit :layout is specified.

Now we add an explicit :layouts option to the frame definition from the previous example. The pane

named explanation occupies the bottom sixth of the screen. The remaining five-sixths are occupied by

the demo and commands panes, which lie side by side with the command pane to the right. The com-
mands pane is only as wide as necessary to display the command menu.

(clim:define-application-frame graphics-demo
 ()
 ()
 (:panes
 (commands :command-menu)
 (demo :application)
 (explanation :application :scroll-bars nil))
 (:layouts
 (default
 (clim:vertically ()
 (5/6 (clim:horizontally demo commands))
 (1/5 explanation)))))

commands

demo

explanation

- - - -
CLIM 2.2 User Guide 191

Figure 9.3. The layout for the graphic-demo example with an explicit :layout.

Finally, here is a stripped-down version of the application frame definition for the CAD demo (in the file

cad-demo.lisp in the CLIM demos directory) that implements an extremely simplistic computer-aided logic

circuit design tool.

There are four panes defined for the application. The pane named title displays the string "Mini-

CAD" and serves to remind the user which application he is using. For the purpose of this example, we use

a command menu pane instead of a menu bar. The pane named design-area is the actual work surface

of the application on which various objects (logic gates and wires) can be manipulated. A pane named

documentation is provided to inform the user about what actions can be performed using the pointing

device (typically the mouse) and is updated based on what object is pointed to.

The application has two layouts, one named main and one named other. Both layouts have their panes

arranged in vertical columns. At the top of both layouts is the title pane, which is of the smallest height

necessary to display the title string "Mini-CAD". Both layouts have the documentation pane at the bot-

tom.

The two layouts differ in the arrangement of the menu and design-area panes. In the layout named

main, the menu pane appears just below the title pane and extends for the width of the screen. Its height

will be computed so as to be sufficient to hold all the items in the menu. The design-area pane occupies

the remaining screen real estate, extending from the bottom of the menu pane to the top of the documen-
tation pane, and is as wide as the screen.

The layout named other differs from the main layout in the shape of the design-area pane. Here

the implementor of the CAD demo realized that depending on what was being designed, either a short, wide

area or a narrower but taller area might be more appropriate. The other layout provides the narrower,

taller alternative by rearranging the menu and design-area panes to be side by side (forming a row of

the two panes). The menu and design-area panes occupy the space between the bottom of the title
pane and the top of the documentation pane, with the menu pane to the left and occupying as much

width as is necessary to display all the items of the menu and the design-area occupying the remaining

width.

(clim:define-application-frame cad-demo
 (clim:standard-application-frame clim:output-record)
 ((object-list :initform nil))
 (:menu-bar nil)

demo

explanation

-
-
-

commands
192 CLIM 2.2 User Guide

 (:pointer-documentation t)
 (:panes
 (title :title :display-string "Mini-CAD")
 (menu :command-menu)
 (design-area :application))
 (:layouts
 (default
 (clim:vertically ()
 title menu design-area))
 (other
 (clim:vertically ()
 title
 (clim:horizontally () menu design-area)))))

Figure 9.4. The two layouts of the Mini-CAD demo. Layout main is on the left,
layout other is on the right.

9.3 CLIM application frames vs. CLOS

When you define an application frame, you also implicitly define a CLOS class that implements the frame.

This section describes the interaction between you application frame classes and CLOS.

9.3.1 Initializing application frames

There are several ways to initialize an application frame:

Mini-CAD

Mini-CAD
- - - -

- -
- -
- -

title

menu

design-area

documentation
CLIM 2.2 User Guide 193

• The value of an application frame's slot can be initialized using the :initform slot option (or

:default-initargs) in the slot's specifier in the define-application-frame form.

This technique is suitable if the slot's initial value does not depend on the values of other slots,

calculations based on the values of initialization arguments, or other information that cannot be

determined until after the application frame is created. See the macro defclass to learn about

slot specifiers.

• For initializations that depend on information that may not be available until the application frame

has been created, an :after method can be defined for initialize-instance on the

application frame's class. Note that the special variable *application-frame* is not bound

to the application since the application is not yet running. You may use with-slots, with-
accessors, or any slot readers or accessors you have defined.

• A :before or :around method for run-frame-top-level on the application's frame is

probably the most versatile place to perform application frame initialization. This method will not

be executed until the application starts running. *application-frame* will be bound to the

application frame. If the application frame employs its own top-level function, then this function

can perform initialization tasks at the beginning of its body. This top-level function may call

default-frame-top-level to achieve the standard behavior for application frames.

Of course, these are only suggestions. Other techniques might be more appropriate for your application.

Of those listed, the :before or :around method on run-frame-top-level is probably the best

for most circumstances.

Although application frames are CLOS classes, do not use make-instance to create them. To instan-

tiate an application frame, always use make-application-frame. This function provides important

initialization arguments specific to application frames which make-instance does not. make-
application-frame passes any keyword value pairs which it does not handle itself on to make-
instance. Thus, it will respect any initialization options which you give it, just as make-instance
would.

9.3.2 Inheritance of application frames

Here is an example of how an application frame's behavior might be modified by inheritance from a super-

class.

Suppose we wanted our application to record all of the commands which were performed while it was

executing. This might be useful in the context of a program for the financial industry where it is important

to keep audit trails for all transactions. As this is a useful functionality that might be added to any of a num-

ber of different applications, we will separate it out into a special class which implements the desired behav-

ior. This class can then be used as a superclass for any application that should keep a log of its actions.

The class has a :pathname initarg which specifies the name of the log file. It has a slot named trans-
action-stream whose value is a stream opened to the log file when the application is running.

(defclass transaction-recording-mixin ()
 ((transaction-pathname :type pathname
 :initarg :pathname
 :reader transaction-pathname)
 (transaction-stream :accessor transaction-stream)))

We use an :around method on run-frame-top-level which opens a stream to the log file, and

stores it in the transaction-stream slot. unwind-protect is used to clear the value of the slot

when the stream is closed.
194 CLIM 2.2 User Guide

(defmethod clim:run-frame-top-level :around
 ((frame transaction-recording-mixin))
 (with-slots (transaction-pathname transaction-stream) frame
 (with-open-file (stream transaction-pathname
 :direction :output)
 (unwind-protect
 (progn
 (setq transaction-stream stream)
 (call-next-method))
 (setq transaction-stream nil)))))

This is where the actual logging takes place. The command loop in default-frame-top-level
calls execute-frame-command to execute a command. Here we add a :before method that will log

the command.

(defmethod clim:execute-frame-command :before
 ((frame transaction-recording-mixin) command)
 (format (transaction-stream frame)
 "~&Command: ~A" command))

It is now an easy matter to alter the definition of an application to add the command logging behavior.

Here is the definition of the puzzle application frame from the CLIM demos suite (from the file clim-
2.0/demos/puzzle.lisp). Our modifications are shown in italics. We use the superclasses argument to

specify that the puzzle application frame should inherit from transaction-recording-mixin.

Because we are using the superclass argument, we must also explicitly include standard-
application-frame which was included by default when the superclasses argument was empty.

(clim:define-application-frame puzzle
 (transaction-recording-mixin clim:standard-application-frame)

 ((puzzle :initform (make-array ’(4 4))
 :accessor puzzle-puzzle))
(:default-initargs :pathname "puzzle-log.text")

 (:panes
 (display :application
 :display-function ’draw-puzzle
 :text-style ’(:fix :bold :very-large)
 :incremental-redisplay t
 :text-cursor nil
 :width :compute :height :compute
 :end-of-page-action :allow
 :end-of-line-action :allow))
 (:layouts
 (:default display)))

Also note the use of the following to provide a default value for the log file name if the user doesn't specify

one.

(:default-initargs :pathname "puzzle-log.text")

The user might run the application by executing

(clim:run-frame-top-level
 (clim:make-application-frame ’puzzle
 :parent (find-port)
 :pathname "my-puzzle-log.text"))
CLIM 2.2 User Guide 195

Here the :pathname initarg was used to override the default name for the log file (as was specified by

the :default-initargs clause in the above application frame definition) and to use the name "my-

puzzle-log.text" instead.

9.3.3 Accessing slots and components of CLIM application frames

CLIM application frames are instances of the defined subclass of the standard-application-
frame class. You explicitly specify accessors for the slots you have specified for storing application-spe-

cific state information, and use those accessors as you would for any other CLOS instance. Other CLIM

defined components of application frame instances are accessed via documented functions. Such compo-

nents include frame panes, command tables, top level sheet, and layouts.

9.4 Running a CLIM application

You can run a CLIM application using the functions make-application-frame and run-frame-
top-level. First use find-port to create a port to pass as the :parent argument to make-
application-frame. Here is a code fragment which illustrates this technique under Allegro:

(clim:run-frame-top-level
 (clim:make-application-frame ’frame-name
 :parent (clim:find-port :server-path ’(:motif :host "localhost"))))

run-frame-top-level will not return until the application exits.

Note that *application-frame* is not bound until run-frame-top-level is invoked.

9.5 Examples of CLIM application frames

These are examples of how to use CLIM application frames.

9.5.1 Example of defining a CLIM application frame

Here is an example of an application frame. This frame has three slots, named pathname, integer and

member. It has two panes, an :accept-values pane named avv and an :application pane named

display. It uses a command table named dingus, which will automatically be defined for it (see

define-command-table) and which inherits from the accept-values-pane command table so

that the accept-values pane will function properly.

(clim:define-application-frame dingus ()
 ((pathname :initform #p"foo")
 (integer :initform 10)
 (member :initform :one))
 (:panes
 (avv :accept-values
 :display-function ’(clim:accept-values-pane-displayer
 :displayer display-avv))
 (display :application
196 CLIM 2.2 User Guide

 :display-function ’draw-display
 :display-after-commands :no-clear))
 (:command-table (dingus :inherit-from (clim:accept-values-pane))))

This is the display function for the display pane of the "dingus" application. It just prints out the values

of the three slots defined for the application.

(defmethod draw-display ((frame dingus) stream)
 (with-slots (pathname integer member) frame
 (fresh-line stream)
 (clim:present pathname ’pathname :stream stream)
 (write-string ", " stream)
 (clim:present integer ’integer :stream stream)
 (write-string ", " stream)
 (clim:present member ’(member :one :two :three) :stream stream)
 (write-string "." stream)))

This is the display function for the avv pane. It invokes accept for each of the application's slots so

that the user can alter their values in the avv pane.

(defmethod display-avv ((frame dingus) stream)
 (with-slots (pathname integer member) frame
 (fresh-line stream)
 (setq pathname (clim:accept ’pathname
 :prompt "A pathname" :default pathname
 :stream stream))
 (fresh-line stream)
 (setq integer (clim:accept ’integer
 :prompt "An integer" :default integer
 :stream stream))
 (fresh-line stream)
 (setq member (clim:accept ’(member :one :two :three)
 :prompt "One, Two, or Three" :default member
 :stream stream))
 (fresh-line stream)
 (clim:accept-values-command-button (stream :documentation "You wolf")
 (write-string "Wolf whistle" stream)
 (beep))))

This function will start up a new "dingus" application. The argument is a port, as might be returned by

find-port.

(defun run-dingus (port)
 (let ((dingus (clim:make-application-frame ’dingus
 :parent port :width 400 :height 400)))
 (clim:run-frame-top-level dingus)))

All this application does is allow the user to alter the values of the three application slots pathname,

integer and member using the avv pane. The new values will automatically be reflected in the dis-
play pane.
CLIM 2.2 User Guide 197

9.5.2 Example of constructing a function as part of running an
application

You can supply an alternate top level (which initializes some things and then calls the regular top level) to

construct a function as part of running the application. Note that when you use this technique, you can close

the function over other pieces of the Lisp state that might not exist until application runtime.

(clim:define-application-frame different-prompts ()
 ((prompt-state ...) ...)
 (:top-level (different-prompts-top-level))
 ...)

(defmethod different-prompts-top-level
 ((frame different-prompts) &rest options)
 (flet ((prompt (stream frame)
 (with-slots (prompt-state) frame
 ...)))
 (apply #’clim:default-frame-top-level
 frame :prompt #’prompt options)))

9.6 CLIM application frame accessors

The following functions may be used to access or modify the state of the application frame itself. Informa-

tion available includes what the currently exposed panes are, what the current layout is, what command

table is being used, and so forth. Functions are provided for moving top-level frames (position-
sheet-carefully) as well as raising, burying, destroying, etc. frames.

application-frame [Variable]

■ The current application frame. The value is CLIM's default application. This variable is typically

used in the bodies of commands and translators to gain access to the state variables of the application,

usually in conjunction with with-slots or slot-value.

■ This variable is bound by an :around method of run-frame-top-level on

application-frame. You should not rebind it, since CLIM depends on its value.

with-application-frame [Macro]

Arguments: (frame) &body body

■ This macro provides lexical access to the current frame for use with commands and the :pane,

:panes, and :layouts options. frame is bound to the current frame within the context of one

of those options.

■ frame is a symbol; it is not evaluated.

map-over-frames [Function]

Arguments: function &key port frame-manager

■ Applies the function function to all of the application frames that match port and frame-
manager. If neither port nor frame-manager is supplied, all frames are considered to match.

If frame-manager is supplied, only those frames that use that frame manager match. If port is

supplied, only those frames that use that port match.

■ function is a function of one argument, the frame. It has dynamic extent.
198 CLIM 2.2 User Guide

destroy-frame [Generic function]

Arguments: frame

■ Destroys the application frame frame.

raise-frame [Generic function]

Arguments: frame

■ Raises the application frame frame to be on top of all of the other host windows by invoking

raise-sheet on the frame's top-level sheet.

bury-frame [Generic function]

Arguments: frame

■ Buries the application frame frame to be underneath all of the other host windows by invoking

bury-sheet on the frame's top-level sheet.

position-sheet-carefully [Function]

Arguments: sheet x y

■ sheet should be a top-level frame (i.e. a window). sheet is positioned so that its top left corner

is located at (x,y), which are in screen coordinates.

frame-name [Generic function]

Arguments: frame

■ Returns the name, which is a symbol, of the application frame. You can change the name of an

application frame by using setf on frame-name.

frame-pretty-name [Generic function]

Arguments: frame

■ Returns the pretty name, which is a string, of the application frame. You can change the pretty

name of an application frame by using setf on frame-pretty-name.

frame-state [Generic function]

Arguments: frame

■ Returns one of :disowned, :enabled, :disabled, or :shrunk, indicating the current

state of frame. :disowned means that no frame manager owns the frame. :enabled means the

frame is currently enabled and visible on some port. :disabled means that the frame is owned by

a frame manager, but is not visible anywhere. :shrunk means that the frame has been iconified.

frame-standard-input [Generic function]

Arguments: frame

■ Returns the value that should be used for *standard-input* for frame.

■ The default method (defined on application-frame) uses the first pane of type :inter-
actor. If there are no interactor panes, the value returned by frame-standard-output is used.

default-frame-top-level calls this to determine what to bind *standard-input*
to.

You will often implement a method for this generic function for an application frame, since

CLIM cannot always reliably determine which pane to use for *standard-input*.
CLIM 2.2 User Guide 199

frame-standard-output [Generic function]

Arguments: frame

■ Returns the value that should be used for *standard-output* for frame.

The default method (defined on application-frame) uses the first pane of type :appli-
cation in the current layout.

default-frame-top-level calls this to determine what to bind *standard-output*
to.

You will often implement a method for this generic function for an application frame, since

CLIM cannot always reliably determine which pane to use for *standard-output*.

frame-error-output [Generic function]

Arguments: frame

■ Returns the value that should be used for *error-output* for frame.

The default method (defined on application-frame) uses the first pane of type :appli-
cation in the current layout.

default-frame-top-level calls this to determine what to bind *error-output* to.

frame-query-io [Generic function]

Arguments: frame

■ Returns the value that should be used for *query-io* for frame.

The default method (defined on application-frame) first tries to use the value returned by

frame-standard-input, and if it is nil, it uses the value returned by frame-standard-
output.

default-frame-top-level calls this to determine what to bind *query-io* to.

pointer-documentation-output [Variable]

■ This will be bound either to nil, or to a stream on which pointer documentation should be dis-

played.

frame-pointer-documentation-output [Generic function]

Arguments: frame

■ Returns the value that should be used for *pointer-documentation-output* for

frame.

The default method (defined on application-frame) uses the first pane of type

:pointer-documentation in the current layout.

default-frame-top-level calls this to determine what to bind *pointer-
documentation-output* to.

frame-current-layout [Generic function]

Arguments: frame

■ Returns the name of the current layout for frame. Use (setf frame-current-layout)
to change the current layout.
200 CLIM 2.2 User Guide

com-
frame-current-panes [Generic function]

Arguments: frame

■ Returns a list of all of the named panes that are contained in the current layout for the frame

frame. The elements of the list will be pane objects.

frame-panes [Generic function]

Arguments: frame

■ Returns a pane that represents that top level pane in the current layout.

get-frame-pane [Generic function]

Arguments: frame pane-name &key (errorp t)

■ Returns the stream pane named by pane-name in the current layout for frame. This is the re

mended way to find the stream associated with a pane.

If the pane is not found in the current layout and errorp is t, and error is signaled. Otherwise

if errorp is nil, the returned value will be nil.

find-pane-named [Generic function]

Arguments: frame pane-name &key (errorp t)

■ Returns the pane (of any type) named by pane-name in the current layout for frame.

If the pane is not found in the current layout and errorp is t, and error is signaled. Otherwise

if errorp is nil, the returned value will be nil.

frame-command-table [Generic function]

Arguments: frame

■ Returns the name of the command table currently being used by the frame frame. You can use

this function with setf to change the command table to be used.

frame-find-innermost-applicable-presentation [Generic function]

Arguments: frame input-context stream x y

■ Locates and returns the innermost applicable presentation on the window stream at the pointer

position indicated by x and y, in the input context input-context, on behalf of the application

frame frame.

You can specialize this generic function for your own application frames. The default method

calls find-innermost-applicable-presentation.

frame-input-context-button-press-handler [Generic function]

Arguments: frame stream button-press-event

■ This function is responsible for handling user pointer gestures on behalf of frame. stream is

the window on which button-press-event took place.

The default method calls frame-find-innermost-applicable-presentation to

find the innermost applicable presentation, and then calls throw-highlighted-
presentation to execute the translator that corresponds to the user's gesture.
CLIM 2.2 User Guide 201

frame-maintain-presentation-histories [Generic function]

Arguments: frame

■ Returns t if the frame maintains histories for its presentations, otherwise returns nil. The

default method on the class standard-application-frame returns t if and only if the frame

has an interactor pane.

You can specialize this generic function for your own application frames.

frame-top-level-sheet [Generic function]

Arguments: frame

■ Returns the window that corresponds to the top level window for the frame frame. This is the

window that has as its children all of the panes of the frame.

frame-document-highlighted-presentation [Generic function]

Arguments: frame presentation input-context window x y stream

■ This generic function is called to output the pointer documentation to stream for a presentation

presentation in the application-frame frame. x and y are the mouse co-ordinates in window.

input-context is the current input-context of the particular frame.

Frame iconification/deiconification

note-frame-deiconified [Generic function]

Arguments: frame-manager frame

■ This generic function is called whenever the frame-state of frame changes from :shrunk. Calling

this function will force the state to change from :shrunk to :enabled. This function should only be

called on frame's whose state is either :shrunk or :enabled.

note-frame-iconified [Generic function]

Arguments: frame-manager frame

■ This generic function is called whenever the frame-state of frame changes to :shrunk. Calling

this function will force the state to change to :shrunk. This function should only be called on frame's

whose state is either :shrunk or :enabled.

9.7 Operators for running CLIM applications

The following functions are used to start up an application frame, exit from it, and control the read-eval-

print loop of the frame (for example, redisplay the panes of the frame, and read, execute, enable, and disable

commands).

run-frame-top-level [Generic function]

Arguments: frame &key &allow-other-keys

■ Runs the top-level function for frame. The default method merely runs the top-level function of

frame as specified by the :top-level option of define-application-frame, passing

along any keyword arguments to the top level function. If :top-level was not supplied,

default-frame-top-level is used.

application-frame provides an :around method which binds *application-
frame* to frame.
202 CLIM 2.2 User Guide

default-frame-top-level [Generic function]

Arguments: frame &key command-parser command-unparser partial-command-
parser (prompt "Command: ")

■ The default top-level function for application frames. This function implements a read-eval-print

loop that calls read-frame-command, then calls execute-frame-command, and finally

redisplays all of the panes that need to be redisplayed.

Note that the source for this function is in the file default-frame-top-level.lisp in the CLIM demos,

which are in the src/clim/demo/ directory in the distribution.

default-frame-top-level establishes a simple restart for abort, so that anything that

invokes an abort restart will by default throw to the top level command loop of the application

frame. (Of course, the programmer can specify a restart-case for the abort restart.)

default-frame-top-level binds several of Lisp's standard stream variables. *stan-
dard-output* is bound to the value returned by frame-standard-output. *standard-
input* is bound to the value returned by frame-standard-input. *query-io* is bound to

the value returned by frame-query-io.

prompt controls the prompt. You can supply either a string or a function of two arguments

(stream and frame) that outputs the prompt on the stream. The default for prompt is the string

"Command: ". To set your own prompt string supply :prompt to the :top-level option of

define-application-frame:

(clim:define-application-frame different-prompt ()

 (...)

 (:top-level (clim:default-frame-top-level

 :prompt "What next, mate? "))

If you want the prompt to change as a function of the state of the application, you can supply a

function (instead of a string):

(defun promptfun (stream frame)

 (with-slots (prompt-state) frame

 (format stream "Prompt ~D: " prompt-state)))

(clim:define-application-frame different-prompts ()

 ((prompt-state ...) ...)

 (:top-level (clim:default-frame-top-level

 :prompt promptfun))

 ...)

If there is an interactor pane in the frame, command-parser defaults to command-line-
command-parser, command-unparser defaults to command-line-command-
unparser, and partial-command-parser defaults to command-line-read-
remaining-arguments-for-partial-command. If there is no interactor pane,

command-parser defaults to menu-command-parser and partial-command-parser
defaults to menu-read-remaining-arguments-for-partial-command; there is no

need for an unparser when there is no interactor. The frame's top level loop binds *command-
parser*, *command-unparser*, and *partial-command-parser* to the values of

command-parser, command-unparser, and partial-command-parser.
CLIM 2.2 User Guide 203

frame-exit [Generic function]

Arguments: frame

■ Exits from the application frame frame by signalling a frame-exit condition. The condi-

tion's frame slot will have frame in it.

■ In the current implementation, you must call frame-exit on frame from the process running

the frame-top-level of frame. Calling frame-exit from a different process behaves as a no-op.

■ Window managers may provide some way to ‘close’ or ‘exit’ a window, often from a window-

manager-supplied menu. When this window-manager option is chosen, frame-exit is called and

so the window-manager choice is typically equivalent to calling frame-exit directly.

■ Note that the action of frame-exit is similar to a throw. One result of this fact is that you

cannot do anything to the frame after frame-exit is called, either after the call to frame-exit
or in an :after method for frame-exit. Everything you want to do to the frame must be done

before the call to frame-exit. Also, if you are tracing frame-exit, you will not see it return.

This is expected behavior.

frame-exit [Condition]

■ The condition signaled by frame-exit.

frame-exit-frame [Generic function]

Arguments: frame-exit

■ Returns the application frame object that signaled the frame-exit condition.

redisplay-frame-pane [Generic function]

Arguments: frame pane-name &key force-p

■ Causes the pane pane-name of frame to be redisplayed immediately. If force-p is t, then

the pane is forcibly redisplayed even if it is an incrementally redisplayed pane that would not other-

wise require redisplay.

redisplay-frame-panes [Generic function]

Arguments: frame &key force-p

■ Causes all of the panes of frame to be redisplayed immediately. If force-p is t, then the panes

are forcibly redisplayed even if they are incrementally redisplayed panes that would not otherwise

require redisplay.

frame-replay [Generic function]

Arguments: frame stream &optional region

■ Replays all of the output records in stream's output history on behalf of the application frame

frame that overlap the region region. If region is not supplied, all of the output records that

overlap the viewport are replayed.

■ You can specialize this generic function for your own application frames. The default method for

this calls stream-replay.

frame-current-layout [Generic function]

Arguments: frame

■ Returns a symbol naming the current layout of frame.
204 CLIM 2.2 User Guide

(setf frame-current-layout) [Generic function]

Arguments: frame new-layout

■ Sets the layout of frame to be the new layout named new-layout. This is thy say that other

layouts are selected and displayed.

■ Note: (setf frame-current-layout) throws out of the application's command loop, all

the way back to run-frame-top-level. This is done so that CLIM can perform some window

management functions, such as rebinding I/O streams that correspond to the windows in the new lay-

out. Therefore, when you call (setf frame-current-layout), you should only do so after
you have done everything else in the sequence of operations.

frame-all-layouts [Generic function]

Arguments: frame

■ Returns a list of all the layout names for frame.
CLIM 2.2 User Guide 205

[This page intentionally left blank.]
206 CLIM 2.2 User Guide

Chapter 10 Commands in CLIM

10.1 Introduction to CLIM commands

In CLIM, users interact with applications through the use of commands. A command is an object that rep-

resents one interaction with a user that results in some operation being performed in an application.

Commands are read and executed by the command loop. CLIM's command loop accepts input of presen-

tation type command and then executes the accepted command. This chapter discusses how commands are

represented.

CLIM supports four main styles of command interaction. It is important to note that the choice of inter-

action styles is independent of the command loop or the set of commands. The relationship between a user's

interactions and the commands to be executed is governed by command tables.

• Mouse interaction via command menus or dialogs. A command is invoked by clicking on an item

in a menu, or by filling in the fields of a dialog.

• Keyboard interaction using keystroke accelerators. A single keystroke invokes the associated

command.

• Mouse interaction via command translators. A command can be invoked by clicking on any

object displayed by the interface. The particular combination of mouse-buttons and modifier keys

(e.g. shift, control) is called a gesture. As part of the presentation system, a command translator

turns a gesture on an object into a command. Drag and drop translators are a special case of more

general translators, and can be used to implement Macintosh-desktop-like interfaces.

• Keyboard interaction using a command-line processor. The user types a complete textual

representation of command names and arguments. The text is parsed by the command-line

processor to form a command. A special character (usually newline) indicates to the command-

line processor that the text is ready to be parsed.

A command table is an object that serves to mediate between a command input context (e.g., the top level

of an application frame), a set of commands, and these interaction styles.

Commands may take arguments, which are specified by their presentation types.

For simple CLIM applications, define-application-framewill automatically create a command

table, a top level command input context, and define a command defining macro for you.

Following a discussion of the simple approach, this chapter discusses command tables and the command

processor in detail. This information is provided for the curious and for those who feel they require further

control over their application's interactions. These are some circumstances which might suggest something

beyond the simple approach:

• Your application requires more than one command table, for example, if it has multiple modes

with different sets of commands available in each mode.

• If you have sets of commands which are common among several modes or even among several

applications, you could use several command tables and inheritance to help organize your

command sets.
CLIM 2.2 User Guide 207

• Your application may be complex enough that you may want to develop more powerful tools for

examining and manipulating command tables.

If you do not require this level of detail, then you can just read section 10.2 Defining Commands the
Easy Way and skip the remainder of this chapter.

10.2 Defining commands the easy way

CLIM provides utilities to make it easy to define commands for most applications. define-
application-frame will automatically create a command table for your application. This behavior is

controlled by the :command-table option. It will also define a command defining macro which you will

use to define the commands for your application. This is controlled by the :command-definer option.

This command definer macro will behave similarly to define-command, but will automatically use

your application's command table so you needn't supply one.

Here is an example code fragment illustrating the usage of define-application-frame which

defines an application named editor. A command table named editor-command-table is defined

to mediate the user's interactions with the editor application. It also defines a macro named define-
editor-command which the application programmer will use to define commands for the editor
application and install them in the command table editor-command-table.

(clim:define-application-frame editor ()
 ()
 (:command-table editor-command-table)
 (:command-definer define-editor-command)
 ...)

Note that for this particular example, the :command-table and :command-definer options need

not be supplied since the names that they specify would be the ones which would be generated by default.

These options normally are provided only when you want different names other than the default ones, you

don't want a command definer or you want to specify which command tables the application's command

table inherits from. See the chapter 9 Defining application frames in CLIM and see the macro define-
application-frame for a description of these options.

10.2.1 Command names and command line names

Every command has a command name, which is a symbol. The symbol names the function which imple-

ments the command. The body of the command is the function definition of that symbol.

By convention, commands are named with a "com-" prefix, although CLIM does not enforce this con-

vention.

To avoid collisions among command names, each application should live in its own package; for exam-

ple, there might be several commands named com-show-chart defined for each of a spreadsheet, a nav-

igation program, and a medical application.

CLIM supports a command line name which is separate from the command's actual name. For command

line interactions, the end user sees and uses the command line name. For example, the command com-
show-chart would have a command line name of "Show Chart". When defining a command using

define-command (or the application's command defining macro), you can have a command line name

generated automatically.
208 CLIM 2.2 User Guide

The automatically generated command line name consists of the command's name with the hyphens

replaced by spaces, and the words capitalized; furthermore, if there is a prefix of "com-", the prefix is

removed. For example, if the command name is com-show-file, the command-line name will be "Show

File".

The define-editor-command macro, which would automatically be generated by the above exam-

ple fragment, is used to define a command for the editor application. define-editor-command is

used in the same way as define-command. However, rather than requiring that the programmer supply

editor-command-table as the command table in which to define the command, define-editor-
command will automatically use editor-command-table.

Through the appropriate use of the options to define-editor-command (the same options as for

define-command), the programmer can provide the command via any number of the above mentioned

interaction styles. For example, he could install the command in the editor application's menu as well as

specify a single keystroke command accelerator character for it.

This example defines a command whose command name is com-save-file. The com-save-file
command will appear in the application's command menu, by the name "Save File" (which is automatically

generated from the command name based on the same method as for command line names). The single key-

stroke control-S will also invoke the command.

(define-editor-command (com-save-file :menu t
 :keystroke (:s :control))
 ()
 ...)

Here, a command line name of "Save File" is associated with the com-save-file command. The user

can then type ‘Save File’ to the application's interaction pane to invoke the command.

(define-editor-command (com-save-file :name "Save File")
 ()
 ...)

Since the command processor works by establishing an input context of presentation type command and

executing the resulting input, any displayed presentation can invoke a command so long as there is a trans-

lator defined which translates from the presentation type of the presentation to the presentation type

command. By this mechanism, the programmer can associate a command with a pointer gesture when

applied to a displayed presentation. define-presentation-to-command-translator will do

this; see the documentation for this in 8.7.2 CLIM Operators for defining presentation translators.

10.3 Command objects in CLIM

A command is an object that represents a single user interaction. Each command has a command name,

which is a symbol. A command can also have arguments, both positional and keyword arguments.

CLIM represents commands as command objects. The internal representation of a command object is a

cons of the command name and a list of the command's arguments and is therefore analogous to a Lisp

expression. Functions are provided for extracting the command name and the arguments list from a com-

mand object:

command-name [Function]

Arguments: command

■ Given a command object command, returns the command name.
CLIM 2.2 User Guide 209

command-arguments [Function]

Arguments: command

■ Given a command object command, returns the command's arguments.

partial-command-p [Function]

Arguments: command

■ It is possible to represent a command for which some of the arguments have not yet been supplied.

The value of the symbol *unsupplied-argument-marker* is used in place of any argument

which has not yet been supplied.

■ partial-command-p returns t if command is a partial command.

One can think of define-command as defining templates for command objects. It defines a symbol as

a command name and associates with it the presentation types corresponding to each of the command's

arguments.

define-command [Macro]

Arguments: name arguments &body body

■ Defines a command and characteristics of the command, including its name, its arguments, and,

as options: the command table in which it should appear, its keystroke accelerator, its command-line

name, and whether or not (and how) to add this command to the menu associated with the command

table.

(clim:define-command (com-my-favorite-command

 :name "My Favorite"

 :keystroke (:f)

 :menu "My Fave"

 :command-table my-command-table)

 ((arg1 (or integer string)

 :default "none"

 :display-default t))

 body)

This is the most basic command-defining form. Usually, the programmer will not use define-
command directly, but will instead use a define-application-command form that is auto-

matically generated by define-application-frame. define-application-command
adds the command to the application's command table. By default, define-command does not add

the command to any command table.

■ define-command defines two functions. The first function has the same name as the command

name, and implements the body of the command. It takes as arguments the arguments to the com-

mand as specified by the define-command form, as required and keyword arguments.

The second function defined by define-command implements the code responsible for pars-

ing and returning the command's arguments.

name

Is either a command name, or a cons of the command name and a list of keyword-value pairs. The

keyword-value pairs in name can be:

:command-table command-table-name

Specifies that the command should be added to a command table. command-table-
name either names a command table to which the command should be added, or is nil
210 CLIM 2.2 User Guide

(the default) to indicate that the command should not be added to any command table. This

keyword is only accepted by define-command, not by define-application-
command functions.

:name string

Provides a name to be used as the command-line name for the command for keyboard inter-

actions in the command table specified by the :command-table option. string is a

string to be used; or nil (the default) meaning that the command will not be available via

command-line interactions; or t, which means the command-line name will be generated

automatically. See the function add-command-to-command-table.

:menu menu-item

Specifies that this command will be an item in the menu of the command table specified by

the :command-table option. The default is nil, meaning that the command will not

be available via menu interactions. If menu-item is a string, then that string will be used

as the menu name. If menu-item is t, then the menu name will be generated automati-

cally. See the function add-command-to-command-table. Otherwise, menu-
item should be a cons of the form (string . menu-options), where string is the

menu name and menu-options consists of keyword-value pairs. The valid keywords are

:after and :documentation, which are interpreted as for add-menu-item-to-
command-table.

:keystroke gesture

Specifies a gesture to be used as a keystroke accelerator in the command table specified by

the :command-table option. For applications with interactor panes, these gestures typ-

ically correspond to non-printing characters such as Control-D. The default is nil, mean-

ing that there is no keystroke accelerator.

The :name, :menu, and :keystroke options are allowed only if the :command-table
option was supplied explicitly or implicitly, as in define-application-command.

If the command takes any non-keyword arguments and you have supplied either :menu or

:keystroke, then when you select this command via a command menu or keystroke accelera-

tor, a partial command parser will be invoked in order to read the unsupplied arguments; the

defaults will not be filled in automatically. If this behavior is not desired, then you must call add-
menu-item-to-command-table or add-keystroke-to-command-table yourself

and fully specify the command. For example, use the following instead of supplying :key-
stroke for the com-next-frame command:

(define-debugger-command (com-next-frame :name t)

 ((nframes ’integer

 :default 1

 :prompt "number of frames"))

 (next-frame :nframes nframes))

(clim:add-keystroke-to-command-table

 ’debugger ’(:n :control) :command ’(com-next-frame 1))

arguments

A list consisting of argument descriptions. A single occurrence of the symbol &key may appear

in arguments to separate required command arguments from keyword arguments. Each argu-

ment description consists of a list containing a parameter variable, followed by a presentation type

specifier, followed by keyword-value pairs. The keywords can be:
CLIM 2.2 User Guide 211

:default value

Provides a value which is the default that should be used for the argument, as for

accept.

:default-type type

The same as for accept: If :default is supplied, then the :default and the

:default-type are returned if the input is empty.

:mentioned-default value

Provides a value which is the default that should be used for the argument when a key-

word is explicitly supplied via the command-line processor, but no value is supplied for it.

:mentioned-default is allowed only for keyword arguments. This is most com-

monly provided for boolean keyword arguments; the typical use if :default nil
:mentioned-default t, which means that the ‘default default’ for the boolean argu-

ment is nil, but the default becomes twhen the user types the name of the keyword argu-

ment.

:display-default boolean

The same as for accept: When true, displays the default if one was supplied. When nil,

the default is not displayed.

:prompt string

Provides a string which is a prompt to print out during command-line parsing, as for

accept.

:documentation string

Provides a documentation string that describes what the argument is.

:when form

Provides a form that indicates whether this keyword argument is available. The form is

evaluated in a scope where the parameter variables for the required parameters are bound,

and if the result is nil, the keyword argument is not available. :when is allowed only on

keyword arguments, and form can use only the values of required arguments (that is, it

cannot use the values of any other keyword arguments).

:gesture gesture-name

Provides a gesture-name that will be used for a translator that translates from the argu-

ment to a command. The default is nil, meaning no translator will be written. :gesture
is allowed only when the :command-table option was supplied to the command-defin-

ing form.

body

Provides the body of the command. It has lexical access to all of the command's arguments. If the

body of the command needs access to the application frame, it should use *application-
frame*. The returned values of body are ignored.

define-command arranges for the function that implements the body of the command to get

the proper values for unsupplied keyword arguments.

name-and-options and body are not evaluated. In the argument descriptions, the parameter

variable name is not evaluated, and everything else is evaluated at run-time when argument parsing

reaches that argument, except that the value for :when is evaluated when parsing reaches the key-

word arguments, and :gesture is not evaluated at all.
212 CLIM 2.2 User Guide

command-name-from-symbol [Function]

Arguments: symbol

■ Generates a string suitable for use as a command-line name from the symbol symbol. The string

consists the symbol name with the hyphens replaced by spaces, and the words capitalized. If the sym-

bol name is prefixed by ‘com-’, the prefix is removed. For example, if the symbol is com-show-
file, the resulting string will be "Show File''.

10.4 CLIM Command Tables

CLIM command tables are represented by instances of the CLOS class command-table. A command
table serves to mediate between a command input context, a set of commands and the interactions of the

application's user.

Command tables associate command names with command line names. Command line names are used

in the command line interaction style. They are the textual representation of the command name when pre-

sented and accepted.

A command table can describe a menu from which users can choose commands. A command table can

support keystroke accelerators for invoking commands.

A command table can have a set of presentation translators and actions, defined by define-
presentation-translator, define-presentation-to-command-translator, and

define-presentation-action. This allows the pointer to be used to input commands, including

command arguments.

We say that a command is present in a command table when it has been added to that command table by

being associated with some form of interaction. We say that a command is accessible in a command table

when it is present in that command table or is present in any of the command tables from which that com-

mand table inherits.

command-table [Class]

■ The class that represents command tables.

command-table-name [Generic function]

Arguments: command-table

■ Returns the name of the command table command-table.

command-table-inherit-from [Generic function]

Arguments: command-table

■ Returns a list of all of the command tables from which command-table inherits. You can setf
this in order to change the inheritance of command-table.

find-command-table [Function]

Arguments: name &key (errorp t)

■ Return the command table named by name. If name is itself a command table, it is returned. If

the command table is not found and errorp is t, the command-table-not-found condition

will be signaled.
CLIM 2.2 User Guide 213

define-command-table [Macro]

Arguments: name &key inherit-from menu inherit-menu

■ Defines a command table whose name is the symbol name. The keyword arguments are:

inherit-from

A list of either command tables or command table names. The new command table inherits from

all of the command tables specified by inherit-from. The inheritance is done by union with

shadowing. In addition to inheriting from the explicitly specified command tables, every com-

mand table defined with define-command-table also inherits from CLIM's system com-

mand table. (This command table, global-command-table, contains such things as the

"menu" translator that is associated with the right-hand button on pointers.)

menu

Specifies a menu for the command table. The value of menu is a list of clauses. Each clause is a

list with the syntax (string type value &key documentation keystroke), where

string, type, value, documentation, and keystroke are as in add-menu-item-
to-command-table (defined in section 10.5.1 below)

inherit-menu

Normally, a menu does not inherit any menu items from its parents, but it can inherit menu items,

keystrokes, or both. The possible values for this argument are :menu, :keystrokes, and t.

When inherit-menu is :menu, menu items will be inherited; when it is :keystrokes,

keystrokes are inherited; when it is t, both are inherited.

■ If the command table named by name already exists, define-command-table will modify

the existing command table to have the new value for inherit-from and menu, but will other-

wise leave the other attributes for the existing table alone.

■ None of the arguments to define-command-table arguments is evaluated.

make-command-table [Function]

Arguments: name &key inherit-from menu inherit-menu (errorp t)

■ Creates a command table named name that inherits from inherit-from and has a menu spec-

ified by menu. inherit-from and menu are as in define-command-table. If the command

table already exists and error-p is t, then a command-table-already-exists condition

will be signaled.

A command table can inherit from other command tables. This allows larger sets of commands to be built

up through the combination of smaller sets. In this way, a tree of command tables can be constructed. Dur-

ing command lookup, if a command is not found in the application's command table, then the command

tables from which that command table inherits are searched also. It is only when the entire tree is exhausted

that an error is signaled.

do-command-table-inheritance [Macro]

Arguments: (command-table-var command-table) &body body

■ The macro do-command-table-inheritance is provided as a facility for programmers to

walk over a command table and the command tables it inherits from in the proper precedence order.

Successively executes body with command-table-var bound first to the command table

command-table, and then to all of the command tables from which command-table inherits.

The recursion follows a depth-first path, considering the inheritees of the first inheritee before con-

sidering the second inheritee. This is the precedence order for command table inheritance.
214 CLIM 2.2 User Guide

 The following functions are provided for examining and altering the commands in a command table:

add-command-to-command-table [Function]

Arguments: command-name command-table &key name menu keystroke
(errorp t)

■ Adds the command named by command-name to the command table command-table. com-
mand-table may be either a command table or a symbol that names a command table. The key-

word arguments are:

name

The command-line name for the command, which can be nil, t, or a string. When it is nil, the

command will not be available via command-line interactions. When it is a string, that string is

the command-line name for the command. When it is t, the command-line name is generated

automatically. The automatically generated command line name consists of the command's name

with the hyphens replaced by spaces, and the words capitalized; furthermore, if there is a prefix

of "com-", the prefix is removed. For example, if the command name is com-show-file, the

command-line name will be "Show File".

For the purposes of command-line name lookup, the character case and style of name are ignored.

menu

A command menu item for the command, which can be nil, t, a string, or a cons. When it is

nil, the command will not be available via menus. When it is a string, the string will be used as

the menu name. When it is t, an automatically generated menu name will be used. When it is a

cons of the form (string . menu-options), then string is the menu name and menu-
options consists of keyword-value pairs. The valid keywords are :after and :documen-
tation, which are interpreted as for add-menu-item-to-command-table.

keystroke

The value for keystroke is either a standard character, a gesture specification, or nil. When

it is a standard character or gesture spec, that gesture is the keystroke accelerator for the command;

otherwise the command will not be available via keystroke accelerators.

errorp

If the command is already present in the command table and errorp is t, the command-
already-present condition will be signaled. When the command is already present in the

command table and errorp is nil, then the old command will first be removed from the com-

mand table.

remove-command-from-command-table [Function]

Arguments: command-name command-table &key (errorp t)

■ Removes the command named by command-name from the command table command-
table. command-table may be either a command table or a symbol that names a command

table.

If the command is not present in the command table and errorp is t, the command-not-
present condition will be signaled.
CLIM 2.2 User Guide 215

command-present-in-command-table-p [Function]

Arguments: command-name command-table

■ Returns t if command-name is present in command-table. A command is present in a

command table when it has been added to that command table. A command is accessible in a

command table when it is present in that command table or is present in any of the command tables

from which that command table inherits.

command-accessible-in-command-table-p [Function]

Arguments: command-name command-table

■ If the command named by command-name is not accessible in command-table, then this

function returns nil. Otherwise, it returns the command table in which the command was found.

command-table may be either a command table or a symbol that names a command table.

map-over-command-table-commands [Function]

Arguments: function

Arguments: command-table &key (inherited t)

■ Applies function to all of the commands accessible in command-table. function
should be a function that takes a single argument, the command name.

If inherited is nil instead of t, this applies function only to those commands present in

command-table, that is, it does not map over any inherited command tables.

10.4.1 CLIM's predefined command tables

CLIM provides several command tables from which it is recommended that your application's command

table inherit. These are the predefined command tables:

global-command-table [Command table]

■ The global command table from which all command tables inherit. For the most part, this com-

mand table contains only presentation translators needed by all CLIM applications, such as the iden-

tity translator (the translator that maps objects of any presentation type to themselves).

user-command-table [Command table]

■ A command table reserved for user-defined commands. This is the command table in which

casual extensions should be inserted.

10.4.2 Conditions relating to CLIM command tables

Command table operations can signal these conditions:

command-table-already-exists [Condition]

■ This condition is signaled by make-command-table when you try to create a command table

that already exists.

command-table-not-found [Condition]

■ This condition is signaled by functions such as find-command-table when the named com-

mand table cannot be found.
216 CLIM 2.2 User Guide

command-not-present [Condition]

■ A condition that is signaled when the command you are looking for is not present in the command

table.

command-not-accessible [Condition]

■ A condition that is signaled when the command you are looking for is not accessible in the com-

mand table, for example, find-command-from-command-line-name.

10.5 Styles of interaction supported by CLIM

CLIM supports four main styles of interaction:

• Mouse interaction via command menus

• Mouse interaction via translators.

• Keyboard interaction using a command-line processor

• Keyboard interaction using keystroke accelerators

See the section 10.2 Defining commands the easy way for a simple description of how to use define-
command to associate a command with any of these interaction styles.

The following sections provide descriptions of these interaction styles.

10.5.1 CLIM's Command Menu Interaction Style

Each command table may describe a menu consisting of an ordered sequence of command menu items. The

menu specifies a mapping from a menu name (the name displayed in the menu) to either a command object

or a submenu. The menu of an application's top-level command table may be presented in a window-system

specific way, for example, as a menu bar, or in a :menu application frame pane.

These menu items are typically defined using the :menu option to define-command (or the applica-

tion's command defining macro).

The following functions can be used to display a command menu in one of the panes of an application

frame, or to choose a command from a menu.

display-command-table-menu [Function]

Arguments: command-table stream &key max-width max-height n-rows n-
columns x-spacing y-spacing (cell-align-x ':left) (cell-
align-y ':top) (initial-spacing t) row-wise move-cursor

■ Displays the menu for command-table on stream. This is not normally used in Motif based

applications, since command table menus are generally displayed in a menu bar.

max-width

max-height

Specifies the maximum width, in device units, of the table display.

n-rows

Specifies the number of rows of the table. Specifying this overrides max-width.

n-columns

Specifies the number of columns of the table. Specifying this overrides max-height.
CLIM 2.2 User Guide 217

x-spacing

Determines the amount of space inserted between columns of the table; the default is the width

of a space character. x-spacing can be specified in one of the following ways:

 Integer

A size in the current units to be used for spacing.

String or character

The spacing is the width or height of the string or character in the current text style.

Function

The spacing is the amount of horizontal or vertical space the function would consume when

called on the stream.

List of form (number unit)

The unit is :point, :pixel, or :character.

y-spacing

Specifies the amount of blank space inserted between rows of the table; the default is the vertical

spacing for the stream. The possible values for this option are the same as for the x-spacing
option.

cell-align-x

Specifies the horizontal placement of each of the cells in the command menu. This is like the

:align-x option to formatting-cell.

cell-align-y

Specifies the horizontal placement of each of the cells in the command menu. This is like the

:align-y option to formatting-cell.

move-cursor

When t, CLIM moves the cursor to the end of the table. The default is t.

display-command-menu [Function]

Arguments: frame stream &key command-table max-width max-height n-rows
n-columns (cell-align-x ':left) (cell-align-y ':top)

■ Displays the menu described by the command table associated with the application frame frame
onto stream. This is generally used as the display function for application panes of type

:command-menu. Since Motif based applications usually use a menu bar, you will probably not

use this very often.

command-table

Specifies the command table.

max-width

max-height

Specifies the maximum width and height, in device units, of the menu. The default for these is

computed from the frame's layout.

n-rows

Specifies the number of rows of the table. Specifying this overrides max-width.

n-columns

Specifies the number of columns of the table. Specifying this overrides max-height.
218 CLIM 2.2 User Guide

cell-align-x

Specifies the horizontal placement of each of the cells in the command menu. This is like the

:align-x option to formatting-cell.

cell-align-y

Specifies the horizontal placement of each of the cells in the command menu. This is like the

:align-y option to formatting-cell.

■ Generally you will not need to supply max-width, max-height, n-rows, or n-columns,

since CLIM is usually able to compute these.

menu-choose-command-from-command-table [Function]

Arguments: command-table &key associated-window default-style label
cache unique-id id-test cache-value cache-test

■ Displays a menu of all of the commands in command-table's menu, and waits for the user to

choose one of the commands. The returned value is a command object. menu-choose-command-
from-command-table can invoke itself recursively if there are sub-menus.

associated-window, default-style, label, cache, unique-id, id-test,

cache-value, and cache-test are as for menu-choose.

A number of lower level functions for manipulating command menus are also provided:

add-menu-item-to-command-table [Function]

Arguments: command-table string type value &key documentation (after
:end) keystroke text-style (errorp t) button-type

■ Adds a command menu item to command-table's menu. The arguments are:

command-table

Can be either a command table or a symbol that names a command table.

string

The name of the command menu item. The character case and style of string are ignored. This

is how the item will appear in the menu.

type

This is one of: :command, :menu, or :divider. (:function, called for in the CLIM spec,

is not supported in this release.) When type is :command, value should be a command (a cons

of a command name followed by a list of the command's arguments), or a command name. (When

value is a command name, it behaves as though a command with no arguments was supplied.)

In the case where all of the command's required arguments are supplied, clicking a command

menu item invokes the command immediately. Otherwise, the user will be prompted for the

remaining required arguments.

When type is :menu, this item indicates that a sub-menu will be invoked, and so value should

be another command table or the name of another command table.

When type is :divider, some sort of divider (a non-sensitive item displaying string or a

line) is displayed in the menu at that point. Which is determined by value, which can be nil,

:line, or :label. nil and :line mean use a dividing line. (Note that if the look-and-feel

provided by the underlying window system does not support dividing lines, :divider items

with value :line or nil may be ignored.) A value of :label means use string to label a

non-sensitive item displaying string. Allegro CLIM will draw a line or display string.

value

Meaning depends on the value of type, as described above.
CLIM 2.2 User Guide 219

documentation

A documentation string, which can be used as mouse documentation for the command menu item.

after

States where the command menu item should appear in the menu: either :start, :end, nil,

a string, or :sort. :start means to add the new item to the beginning of the menu. A value

of :end (the default) or nil means to add the new item to the end of the menu. A string naming

an existing entry means to add the new item after that entry. If :after is :sort, then the item

is inserted in such a way as to maintain the menu in alphabetical order.

keystroke

If supplied, the command menu item will be added to the command table's keystroke accelerator

table. The value of keystroke should be a standard character or gesture spec. This is exactly

equivalent to calling add-keystroke-to-command-table with the arguments com-
mand-table, keystroke, type, and value. When keystroke is supplied and type is

:command, typing the accelerator character will invoke the command specified by value.

When type is :menu, the command will continue to be read from the sub-menu indicated by

value in a window system specific manner.

text-style

Allows you to specify the text style for any particular menu item.

errorp

If the item named by string is already present in the command table's menu and errorp is t,

then the command-already-present condition will be signaled. When the item is already

present in the command table's menu and errorp is nil, the old item will first be removed from

the menu.

button-type

The value of this argument can be nil (the default) or :help. Has effect only if type is :com-
mand or :menu (:button-type is ignored when type has some other value). Certain win-

dow-systems treat help buttons specially. Specifying a button-type of :help allows the backend

to display the particular menu-item in a way appropriate for help buttons for that backend’s look

and feel.

Currently this only effects the Motif backend where it causes the menu-item to be displayed to

the right of the menu-bar.

remove-menu-item-from-command-table [Function]

Arguments: command-table string &key (errorp t)

■ Removes the item named by string from command-table's menu. command-table may

be either a command table or a symbol that names a command table.

If the command menu item is not present in the command table's menu and errorp is t, then

the command-not-present condition will be signaled.

This function ignores the character case and style of the command menu item's name when

searching through the command table's menu.

map-over-command-table-menu-items [Function]

Arguments: function command-table

■ Applies function to all of the menu items in command-table's menu. function should

be a function of three arguments, the menu name, the keystroke accelerator character (which will be

nil if there is none), and the menu item. The menu items are mapped in the order specified by add-
menu-item-to-command-table.
220 CLIM 2.2 User Guide

map-over-command-table-menu-items does not descend into sub-menus. If you

require this behavior, you should examine the type of the menu item to see if it is :menu and make

the recursive call from function.

find-menu-item [Function]

Arguments: menu-name command-table &key (errorp t)

■ Given a menu-name and a command-table, return two values, the menu item and the com-

mand table in which it was found. If the command menu item is not present in command-table
and errorp is t, then the command-not-accessible condition will be signaled. command-
table may be either a command table or a symbol that names a command table.

command-menu-item-type [Function]

Arguments: item

■ Returns the type of the command menu item item. This will be one of :command, :func-
tion, :menu, or :divider.

command-menu-item-value [Function]

Arguments: item

■ Returns the value of the command menu item item. For example, if the type of item is :com-
mand, this will return a command or a command name.

command-menu-item-options [Function]

Arguments: item

■ Returns a list of the options for the command menu item item.

10.5.2 Mouse interaction via presentation translators

A command table maintains a database of presentation translators. A presentation translator translates from

its from presentation type to its to presentation type when its associated gesture (e.g. clicking a mouse

button) is input. A presentation translator is triggered when its to presentation typematches the input con-

text and its from presentation type matches the presentation type of the displayed presentation (the

appearance of one of your application's objects on the display) on which the gesture is performed.

define-presentation-to-command-translator can be used to associate a presentation and

a gesture with a command to be performed on the object which the presentation represents.

Translators can also be used to translate from an object of one type to an object of another type based on

context. For example, consider an computer aided design system for electrical circuits. You might have a

translator which translates from a resistor object to the numeric value of its resistance. When asked to enter

a resistance (as an argument to a command or for some other query), the user could click on the presentation

of a resistor to enter its resistance.

For a discussion of the facilities supporting the mouse translator interaction style, see the chapter 6

Presentation types in CLIM, especially define-presentation-to-command-translator
CLIM 2.2 User Guide 221

10.5.3 CLIM's command line interaction style

One interaction style supported by CLIM is the command line style of interaction provided on most con-

ventional operating systems. A command prompt is displayed in the application's :interactor pane.

The user enters a command by typing its command line name, followed by its arguments. What the user

types (or enters via the pointer) is echoed to the interactor window. When the user has finished typing the

command, it is executed.

In CLIM, this interaction style is augmented by the input editing facility which allows the user to correct

typing mistakes (see the section 17.1 Input editing and built-in keystroke commands in CLIM) and by

the prompting and help facilities, which provide a description of the command and the expected arguments.

Command entry is also facilitated by the presentation substrate which allows the input of objects matching

the input context, both for command names and command arguments.

See the chapter 8 Presentation Types in CLIM for a detailed description.

find-command-from-command-line-name [Function]

Arguments: name command-table &key (errorp t)

■ Given a command-line name name and a command-table, this function returns two values,

the command name and the command table in which the command was found. If the command is not

accessible in command-table and errorp is t, the command-not-accessible condition

will be signaled.

name is a command-line name. command-table may be either a command table or a symbol

that names a command table.

find-command-from-command-line-name ignores character case and style.

This function is the inverse of command-line-name-for-command.

command-line-name-for-command [Function]

Arguments: command-name command-table &key (errorp t)

■ Returns the command-line name for command-name as it is installed in command-table. If

the command is not accessible in command-table (or the command has no command-line name

and errorp is t), then the command-not-accessible condition is signaled.

If the command does not have a command-line name in the command-table and errorp is

:create, then the returned value will be an automatically created command-line name.

command-table may be either a command table or a symbol that names a command table.

This function is the inverse of find-command-from-command-line-name.

map-over-command-table-names [Function]

Arguments: function command-table &key (inherited t)

■ Applies function to all of the command-line names accessible in command-table. func-
tion should be a function of two arguments, the command-line name and the command name.

■ If inherited is nil instead of t, this applies function only to those command-line names

present in command-table, that is, it does not map over any inherited command tables.
222 CLIM 2.2 User Guide

10.5.4 CLIM's keystroke interaction style

Each command table may have a mapping from keystroke accelerator characters to either command objects

or submenus. This mapping is similar to that for menu items as the programmer might provide a single key-

stroke equivalent to a command menu item.

Note that the kinds of characters that can be typed in vary widely from one platform to another, so the

programmer must be careful in choosing keystroke accelerator characters. Some sort of per-platform con-

ditionalization is to be expected.

Keystroke accelerators will typically be associated with commands through the use of the :keystroke
option to define-command (or the application's command defining macro).

add-keystroke-to-command-table [Function]

Arguments: command-table keystroke type value &key documentation
(errorp t)

■ Adds a keystroke accelerator to the command-table.

command-table

Can be either a command table or a symbol that names a command table.

keystroke

The accelerator gesture. For applications that have an interactor pane, this will typically corre-

spond to a non-printing character, such as control-D. For applications that do not have an interac-

tor pane, keystroke can correspond to a printing character as well.

type

When type is :command, value should be a command (a cons of a command name followed

by a list of the command's arguments), or a command name. (When value is a command name,

it behaves as though a command with no arguments was supplied.) In the case where all of the

command's required arguments are supplied, typing the keystroke invokes the command immedi-

ately. Otherwise, the user will be prompted for the remaining required arguments.

value

Meaning depends on the value of type, as described above.

documentation

A documentation string, which can be used as documentation for the keystroke accelerator.

errorp

If the command menu item associated with keystroke is already present in the command

table's accelerator table and errorp is t, then the command-already-present condition

will signaled. When the item is already present in the command table's accelerator table and

errorp is nil, the old item will first be removed.

remove-keystroke-from-command-table [Function]

Arguments: command-table keystroke &key (errorp t)

■ Removes the item named by keystroke from command-table's accelerator table. com-
mand-table may be either a command table or a symbol that names a command table.

If the command menu item associated with keystroke is not present in the command table's

menu and errorp is t, then the command-not-present condition will be signaled.
CLIM 2.2 User Guide 223

map-over-command-table-keystrokes [Function]

Arguments: function command-table

■ Applies function to all of the keystroke accelerators in command-table's accelerator table.

function should be a function of three arguments, the menu name (which will be nil if there is

none), the keystroke accelerator gesture, and the menu item.

map-over-command-table-keystrokes does not descend into sub-menus. If you

require this behavior, you should examine the type of the menu item to see if it is :menu.

find-keystroke-item [Function]

Arguments: keystroke command-table &key test (errorp t)

■ Given a keystroke accelerator keystroke and a command-table, returns two values, the

command menu item associated with the character and the command table in which it was found.

(Since keystroke accelerators are not inherited, the second returned value will always be command-
table.)

test specifies a function to use for looking up the items in the command table. It should be a

function of two arguments, both characters. It defaults to event-matches-gesture-name-p.

If the keystroke accelerator is not present in command-table and errorp is t, then the

command-not-accessible condition will be signaled. command-table may be either a

command table or a symbol that names a command table.

lookup-keystroke-item [Function]

Arguments: keystroke command-table &key test

■ This is like find-keystroke-item, except that it descends into sub-menus in order to find

a keystroke accelerator matching keystroke. If it cannot find any such accelerator, lookup-
keystroke-item returns nil.

■ test is a function of two arguments used to compare the keystroke to the gestures in the com-

mand table. It defaults to event-matches-gesture-name-p.

lookup-keystroke-command-item [Function]

Arguments: keystroke command-table &key test (numeric-argument 1)

■ This is like lookup-keystroke-item, except that it searches only for enabled commands.

If it cannot find an accelerator associated with an enabled command, lookup-keystroke-
command-item returns nil.

This is the function you are most likely to call when you want to look up a keystroke for the pur-

pose of finding a command to execute. find-keystroke-item and lookup-keystroke-
item are intended more as bookkeeping functions.

test is a function of two arguments used to compare the keystroke to the gestures in the com-

mand table. It defaults to event-matches-gesture-name-p.

Because of the potential ambiguity between keystroke accelerators and normal typed input, the

default CLIM command loop does not cope with keyboard accelerators unless you request it to

explicitly.

To be able to use keystroke accelerators, your application will need to specialize the read-
frame-command generic function. The default method for read-frame-command just calls

read-command. You can specialize it to call read-command-using-keystrokes within

the context of with-command-table-keystrokes:

(defmethod clim:read-frame-command ((frame my-application) &key)
 (let ((command-table (clim:find-command-table ’my-command-table)))
224 CLIM 2.2 User Guide

 (clim:with-command-table-keystrokes (keystrokes command-table)
 (clim:read-command-using-keystrokes command-table keystrokes))))

with-command-table-keystrokes [Macro]

Arguments: (keystroke-var command-table) &body body

■ Binds keystroke-var to a list that contains all of the keystroke accelerator gestures in the

command table command-table, and then executes body in that context.

(clim:with-command-table-keystrokes (keystrokes command-table)

 (let ((command (clim:read-command-using-keystrokes

 command-table keystrokes

 :stream command-stream)))

 (if (and command (not (characterp command)))

 (clim:execute-frame-command frame command)

 (clim:beep stream))))

■ Note that, in general, the keystroke accelerator gestures you choose should not be any characters

that a user can normally type in during an interaction. That is, they will typically correspond to non-

printing characters such as control-E.

This macro generates keystrokes suitable for use by read-command-using-keystrokes.

read-command-using-keystrokes [Function]

Arguments: command-table keystrokes &key stream command-parser
command-unparser partial-command-parser

■ Reads a command from the user via the command lines, the pointer, or typing a single keystroke.

It returns either a command object, or a character if the user typed a keystroke that is in key-
strokes but does not have a keystroke associated with it in the command table.

command-parser, command-unparser, partial-command-parser default from

command-parser, *command-unparser*, and *partial-command-parser*,

which are bound by the application frame's top level loop.

keystrokes is a list of gestures. The other arguments are as for read-command.

See also with-command-table-keystrokes.

Note that if your application also employs the command line interaction style there is the potential for

ambiguity as to whether a character is intended as command line input, a keystroke command or an input

editing command (see the section 17.1 Input editing and built-in keystroke commands in CLIM). For

this reason, it is recommended that you choose keystroke accelerator characters which do not conflict with

the standard printed character set (which might be used for command names and the textual representations

of arguments) or with the input editor. CLIM will make some attempt to resolve such conflicts if they arise.

A keystroke accelerator can only be invoked if there is no other pending command line input. If there is

pending input, keystroke accelerators will not be considered and the keystroke will be interpreted as input

or as an input editor command. If there is no pending input, the keystroke accelerator behavior will take pre-

cedence over that of the rubout handler.

For a description of the CLIM command processor, see the section 10.6 The CLIM command proces-
sor.
CLIM 2.2 User Guide 225

10.6 The CLIM Command Processor

This section describes the default behavior of the CLIM command processor.

The command loop of a CLIM application is performed by the application's top-level function (see the

section 9.2 Defining CLIM application frames). By default, this is default-frame-top-level.

After performing some initializations, default-frame-top-level enters an infinite loop, reading

and executing commands. It invokes the generic function read-frame-command to read a command

which is then passed to the generic function execute-frame-command for execution. The specializa-

tion of these generic functions is the simplest way to modify the command loop for your application. Other

techniques would involve replacing default-frame-top-level with your own top level function.

read-frame-command invokes the command parser by establishing an input context of command.

The input editor keeps track of the user's input, both from the keyboard and the pointer. Each of the com-

mand's arguments is parsed by establishing an input context of the arguments presentation type as described

in the command's definition. Presentation translators provide the means by which the pointer can be used

to enter command names and arguments using the pointer.

read-command [Function]

Arguments: command-table &key stream use-keystrokes command-parser
command-unparser partial-command-parser

■ Reads a command from the user via command lines or the pointer. This function is not normally

called by programmers.

command-table

 Specifies which command table's commands should be read.

stream

The stream from which to read the command.

command-parser

A function of two arguments, command-table and stream. This function should read a com-

mand from the user and return a command object. It defaults to the value of *command-
parser*, which is bound by the application's top level loop.

command-unparser

A function of three arguments, command-table, stream, and command-to-unparse.

The function should print a textual description of the command and the set of arguments supplied

on stream. It defaults to the value of *command-unparser*, which is bound by the appli-

cation's top level loop.

partial-command-parser

A function of four arguments, command-table, stream, partial-command, and

start-position. A partial command is a command structure with *unsupplied-
argument-marker* in place of any argument that remains to be filled in. The function should

read the remaining arguments in any way it sees fit and should return a command object. start-
position is the original input-editor scan position of stream if stream is an interactive

stream. It defaults to the value of *partial-command-parser*, which is bound by the

application's top level loop.

use-keystrokes

The default for this is nil. If it is t, read-command calls read-command-using-
keystrokes to read the command. The keystroke accelerators are those generated by with-
command-table-keystrokes.
226 CLIM 2.2 User Guide

read-frame-command [Generic function]

Arguments: frame &key stream

■ read-frame-command reads a command from the user on the stream stream, and returns

the command object. frame is an application frame.

The default method for read-frame-command calls read-command on frame's current

command table. You can specialize this generic function for your own application frames, for exam-

ple, if you want to have your application be able to read commands using keystroke accelerators, or

you want a completely different sort of command loop.

execute-frame-command [Generic function]

Arguments: frame command

■ execute-frame-command executes the command command on behalf of the application

frame frame.

The default method for execute-frame-command simply applies to command name to the

command arguments.

An application can control which commands are enabled and which are disabled on an individual

basis. Use setf on command-enabled to control this mechanism. The user is not allowed to

enter a disabled command via any interaction style.

command-enabled [Generic function]

Arguments: command-name frame

■ Returns t if the command named by command-name is presently enabled in frame, otherwise

returns nil. If command-name is not accessible to the command table being used by frame,

command-enabled returns nil.

You can use setf on command-enabled in order to enable or disable a command.

unsupplied-argument-marker [Variable]

■ The value of *unsupplied-argument-marker* is an object that can be uniquely identified

as standing for an unsupplied argument in a command object.

numeric-argument-marker [Variable]

■ The value of *numeric-argument-marker* is an object that can be uniquely identified as

standing for a numeric argument in a command object. When possible, CLIM will replace occur-

rences of *numeric-argument-marker* in a command object with the numeric argument

accumulated from the input editor.

For example, the following might come from some sort of Debugger. When the user types Control-5 Con-

trol-N, the Debugger moves down five frames in the stack.

(define-debugger-command (com-next-frame :name t)
 (&key (n-frames ’((integer) :base 10)
 :default 1
 :documentation "Move this many frames")
 (detailed ’boolean
 :default nil :mentioned-default t
 :documentation "Show locals and disassembled code"))
 "Show the next frame in the stack"
 (cond ((and (plusp n-frames)
 (bottom-frame-p (current-frame clim:*application-frame*)))
CLIM 2.2 User Guide 227

 (format t "~&You are already at the bottom of the stack."))
 (t
 (show-frame (nth-frame n-frames) :detailed detailed))))

(add-keystroke-to-command-table ’debugger ’(:n :control)
 :command
 ‘(com-next-frame :n-frames ,*numeric-argument-marker*))

The special variable *command-dispatchers* controls the behavior of the command-or-form
presentation type.

command-dispatchers [Variable]

■ This is a list of characters that indicate that CLIM should read a command when CLIM is accept-

ing input of type command-or-form. The default value for this is :).

10.7 Command-related Presentation Types

CLIM provides several presentation types pertaining to commands:

command [Presentation type]

Arguments: &key command-table

■ The presentation type used to represent a Command Processor command and its arguments.

command-table can be either a command table or a symbol that names a command table.

If command-table is not supplied, it defaults to the command table for the current applica-

tion, that is, (frame-command-table *application-frame*).

When you call accept on this presentation type, the returned value is a list; the first element is

the command name, and the remaining elements are the command arguments. You can use com-
mand-name and command-arguments to access the name and arguments of the command

object.

For more information about CLIM command objects, see the section 10.3 Command Objects
in CLIM.

command-name [Presentation type]

Arguments: command &key command-table

■ The presentation type used to represent the name of a Command Processor command in the com-

mand table command-table.

■ command-table may be either a command table or a symbol that names a command table. If

command-table is not supplied, it defaults to the command table for the current application. The

textual representation of a command-name object is the command-line name of the command,

while the internal representation is the command name.

command-or-form [Presentation type]

Arguments: &key command-table

■ The presentation type used to represent either a Lisp form or a Command Processor command

and its arguments. In order for the use to indicate that he wishes to enter a command, a command

dispatch character must be typed as the first character of the command line. See the variable

command-dispatchers.
228 CLIM 2.2 User Guide

■ command-table may be either a command table or a symbol that names a command table. If

command-table is not supplied, it defaults to the command table for the current application, that

is, (frame-command-table *application-frame*).
CLIM 2.2 User Guide 229

230 CLIM 2.2 User Guide

Chapter 11 Formatted output in
CLIM

11.1 Formatted output in CLIM

CLIM provides a variety of high-level formatted output facilities, including table formatting, graph format-

ting, output filling, and others.

11.2 Concepts of CLIM table and graph formatting

CLIM makes it easy to construct tabular output and graph output. The usual way of making table or a graph

is by indicating what you want to put in the table or graph, and letting CLIM choose the placement of the

cells. CLIM allows you to specify constraints on the placement of the cells with some flexibility.

In the CLIM model of table and graph formatting, each cell is handled separately. You write code that

puts ink on a drawing plane. That ink might be text, graphics, or both. CLIM surrounds all the ink with a

bounding box (or, more precisely, an axis-aligned rectangle). That bounding box is snipped out of the draw-

ing plane and placed in a cell of the table or graph. In the case of table formatting, CLIM's formatting engine

puts whitespace around the ink to make sure that all the cells in a row are the same height, and all the cells

in a column are the same width. In the case of graph formatting, the cells of the graph are laid out according

to some common graphical algorithms.

In both table and graph formatting, you are responsible only for supplying the contents of the cell. CLIM's

formatting engines are responsible for figuring out how to lay out the table or graph so that all the cells fit

together properly.

Also in both types of formatting, you can specify other constraints that affect the appearance of the table

(such as, the spacing between rows or columns, or the width or length of the table).

11.2.1 Formatting item lists in CLIM

Table formatting is inherently two-dimensional from the point of view of the application. Item list format-

ting is inherently one-dimensional output that is presented two-dimensionally. The canonical example is a

menu, where the programmer supplies a list of items to be presented, where a single column or row of menu

entries would be fine (if the list is small enough). In this case, formatting is done when viewport require-

ments make it desirable.

These constraints affect the appearance of item lists:

• The number of rows (allowing CLIM to choose the number of columns)

• The number of columns (allowing CLIM to choose the number of rows)
CLIM 2.2 User Guide 231

• The maximum height (or width) of the column (letting CLIM determine the number of rows and

columns that satisfy that constraint)

11.3 CLIM Operators for Table Formatting

This section summarizes the CLIM operators for table formatting.

These are the general-purpose table formatting operators:

formatting-table [Macro]

Arguments: (&optional stream &rest options &key x-spacing y-spacing
multiple-columns multiple-columns-x-spacing
equalize-column-widths (move-cursor t) record-type)
&body body

■ Establishes a table formatting environment on the stream; the default for stream is *stan-
dard-output*). All output performed within the extent of this macro will be displayed in tabular

form. This must be used in conjunction with formatting-row or formatting-column, and

formatting-cell.

■ The value returned by formatting-table is the table output record.

■ The arguments have values as follows:

stream

The stream to which output should be sent. The default is *standard-output*.

x-spacing

Determines the amount of space inserted between columns of the table; the default is the width

of a space character. x-spacing can be specified in one of the following ways:

as an integer
A size in the current units to be used for spacing.

as string or character
The spacing is the width of the string or character in the current text style.

as a function
The function called with stream as its argument should return a number and that number

of pixels is used.

as a list of form (number unit)

The unit is :point, :pixel, :character or :line and number is a positive inte-

ger. Note that the width is used for :character and the height for :line. :line is

typically used for y-spacing but if used for x-spacing, the horizontal space is (*
number line-height). Similarly, if :character is used for y-spacing, the

vertical space is (* number standard-character-width).

y-spacing

Specifies the amount of blank space inserted between rows of the table; the default is the vertical

spacing for the stream. The possible values for this option are the same as for the x-spacing
option.

multiple-columns

Either nil, t, or an integer. If it is t or an integer, the table rows are broken up into multiple

columns. If it is t, CLIM will determine the optimal number of columns. If it is an integer, it will

be interpreted as the desired number of columns.
232 CLIM 2.2 User Guide

multiple-columns-x-spacing

Controls the spacing between the multiple columns. This option defaults to the value of the x-
spacing option. It has the same format as x-spacing.

equalize-column-widths

When t, CLIM makes all the columns have the same width, which is the width of the widest cell

in any column of the table.

move-cursor

When t, CLIM moves the cursor to the end of the table. The default is t.

record-type

This option is useful when you have defined a customized record type to replace CLIM's default

table formatting record type. It specifies the class of the output record to be created.

formatting-row [Macro]

Arguments: (&optional stream &key record-type) &body body

■ Establishes a row context on the stream (the default is *standard-output*). All output

performed on the stream within the extent of this macro will become the contents of one row of a

table. formatting-row must be used within the extent of formatting-table, and it must be

used in conjunction with formatting-cell.

■ The value returned by formatting-row is the row output record.

■ The arguments are as follows:

stream

The stream to which output should be sent. The default is *standard-output*.

record-type

This option is useful when you have defined a customized record type to replace CLIM's default

row record type. It specifies the class of the output record to be created.

formatting-column [Macro]

Arguments: (&optional stream &key record-type) &body body

■ Establishes a column context on the stream (which defaults to *standard-output*). All

output performed on the stream within the extent of this macro will become the contents of one col-

umn of the table. formatting-column must be used within the extent of formatting-
table, and it must be used in conjunction with formatting-cell.

■ The value returned by formatting-column is the column output record.

■ The arguments are as follows:

stream

The stream to which output should be sent. The default is *standard-output*.

record-type

This option is useful when you have defined a customized record type to replace CLIM's default

column record type. It specifies the class of the output record to be created.
CLIM 2.2 User Guide 233

formatting-cell [Macro]

Arguments: (&optional stream &rest options &key (align-x ':left)
(align-y ':top) min-width min-height record-type &allow-
other-keys) &body body

■ Establishes a cell context on the stream (which defaults to *standard-output*). All out-

put performed on the stream within the extent of this macro will become the contents of one cell in

a table. formatting-cell must be used within the extent of formatting-row,

formatting-column, or formatting-item-list.

■ A cell can contain any other kind of output record: presentation, text, graphics, and so on. The

alignment keywords enable you to specify constraints that affect the placement of the contents of the

cell. Each cell within a column may have a different alignment; thus it is possible, for example, to

have centered legends over flush-right numeric data.

■ The value returned by formatting-cell is the cell output record.

■ The arguments are as follows:

stream

The stream to which output should be sent. The default is *standard-output*.

align-x

Specifies the horizontal placement of the contents of the cell. Can be one of: :left (the default),

:right, or :center.

:left means that the left edge of the cell is at the specified x coordinate. :right means that

the right edge of the cell is at the specified x coordinate. :centermeans that the cell is horizon-

tally centered over the specified x coordinate.

align-y

Specifies the vertical placement of the contents of the cell. Can be one of: :top (the default),

:bottom, or :center.

:topmeans that the top of the cell is at the specified y coordinate. :bottommeans that the bot-

tom of the cell is at the specified y coordinate. :centermeans that the cell is vertically centered

over the specified y coordinate.

min-width

Specifies the minimum width of the cell. The default, nil, causes the width of the cell to be only

as wide as is necessary to contain the cell's contents.

min-width

can be specified in one of the following ways:

as an integer

A size in the current units to be used for spacing.

as a string or character

The spacing is the width (or height) of the string or character in the current text style.

as a function

The spacing is the amount of horizontal (or vertical) space the function would consume

when called on the stream.

as a list of form (number unit)

The unit is :point, :pixel, :line, or :character.

min-height

Specifies the minimum height of the cell. The default, nil, causes the height of the cell to be only

as high as is necessary to contain the cell's contents.
234 CLIM 2.2 User Guide

min-height

is specified in the same way as min-width.

record-type

This option is useful when you have defined a customized record type to replace CLIM's default

cell record type. It specifies the class of the output record to be created.

11.3.1 Examples of table formatting

The following two example show a table of squares and square roots. One is arranged by rows, and the other

by columns. Notice that the labels are centered, but the numbers if the rest of the table are right-aligned.

(defun squares-by-rows (&optional (stream *standard-output*))
 (clim:formatting-table (stream :x-spacing ’(2 :character))
 (clim:formatting-row (stream)
 (clim:with-text-face (stream :italic)
 (clim:formatting-cell (stream :align-x :center) (format stream "N"))
 (clim:formatting-cell (stream :align-x :center) (format stream "N**2"))

(clim:formatting-cell (stream :align-x :center) (format stream"(sqrt N)"))))
 (do ((i 1 (1+ i)))
 ((> i 10))
 (clim:formatting-row (stream)
 (clim:formatting-cell (stream :align-x :right)
 (format stream "~D" i))
 (clim:formatting-cell (stream :align-x :right)
 (format stream "~D" (* i i)))
 (clim:formatting-cell (stream :align-x :right)
 (format stream "~4$" (sqrt i)))))))

(defun squares-by-columns (&optional (stream *standard-output*))
 (clim:formatting-table (stream :x-spacing ’(2 :character))
 (clim:formatting-column (stream)
 (clim:with-text-face (stream :italic)
 (clim:formatting-cell (stream :align-x :center) "N")
 (clim:formatting-cell (stream :align-x :center) "N**2")
 (clim:formatting-cell (stream :align-x :center) "(sqrt N)")))
 (do ((i 1 (1+ i)))
 ((> i 10))
 (clim:formatting-column (stream)
 (clim:formatting-cell (stream :align-x :right)
 (format stream "~D" i))
 (clim:formatting-cell (stream :align-x :right)
 (format stream "~D" (* i i)))
 (clim:formatting-cell (stream :align-x :right)
 (format stream "~4$" (sqrt i)))))))

Tables can be nested. Here is a table that is composed of several nested tables, each of which contains a

small multiplication table for some number. Note the use of :multiple-columns to cause the tables to

be split into 3 columns.

(defun multiplication-tables (&optional (stream *standard-output*))
 (flet ((table (stream factor)
 (clim:surrounding-output-with-border (stream)
CLIM 2.2 User Guide 235

 (clim:formatting-table (stream :multiple-columns 3)
 (do ((i 1 (1+ i)))
 ((> i 9))
 (clim:formatting-row (stream)
 (clim:formatting-cell (stream :align-x :right)
 (format stream "~D" (* i factor)))))))))
 (clim:formatting-table (stream :multiple-columns 3
 :y-spacing 10 :x-spacing 10)
 (do ((i 1 (1+ i)))
 ((> i 9))
 (clim:formatting-row (stream)
 (clim:formatting-cell (stream :align-x :center)
 (table stream i)))))))

11.3.2 CLIM operators for item list formatting

Item list formatting is nearly identical to table formatting, except that the items to be formatted are one

dimensional rather than two dimensional. You should use item list formatting when you simply have

sequences of objects to display whose arrangement is not inherently tabular. For example, CLIM's own

menu code uses item list formatting.

formatting-item-list [Macro]

Arguments: (&optional stream &key x-spacing y-spacing initial-spacing
n-columns n-rows max-width max-height stream-width stream-
height (row-wise t) (move-cursor t) record-type) &body body

■ Establishes a menu formatting context on the stream; stream defaults to *standard-
output*). You can use this macro to format the output in a tabular form when the exact ordering

and placement of the cells is not important.

■ This macro expects its body to output a sequence of items using formatting-cell, which

delimits each item. (You do not use formatting-column or formatting-row within

formatting-item-list.) If no keyword arguments are supplied, CLIM chooses the number of

rows and columns for you. You can specify a constraint such as the number of columns or the number

of rows (but not both), or you can constrain the size of the entire table display, by using max-width
or max-height (but not both). If you supply either one of these constraints, CLIM will adjust the

table accordingly.

■ The value returned by formatting-item-list is the item list output record.

■ The arguments are as follows:

stream

The stream to which output should be sent. The default is *standard-output*.

x-spacing

Determines the amount of space inserted between columns of the table; the default is the width

of a space character. x-spacing can be specified in one of the following ways:

as an integer
A size in the current units to be used for spacing.

as string or character
The spacing is the width of the string or character in the current text style.
236 CLIM 2.2 User Guide

as a function
The function called with stream as its argument should return a number and that number

of pixels is used.

as a list of form (number unit)

The unit is :point, :pixel, :character or :line and number is a positive inte-

ger. Note that the width is used for :character and the height for :line. :line is

typically used for y-spacing but if used for x-spacing, the horizontal space is (*
number line-height). Similarly, if :character is used for y-spacing, the ver-

tical space is (* number standard-character-width).

y-spacing

Specifies the amount of blank space inserted between rows of the table; the default is the vertical

spacing for the stream. The possible values for this option are the same as for the x-spacing
option.

initial-spacing

formatting-item-list tries to evenly space items across the entire width of the stream.

When this option is t, no whitespace is inserted before the first item on a line.

row-wise

When this is nil, if there are multiple columns in the item list, the entries in the item list are

arranged in a manner similar to entries in a phone book. Otherwise the entries are arranged in a

row-wise fashion.

n-columns

Specifies the number of columns of the table.

n-rows

Specifies the number of rows of the table.

max-width

Specifies the maximum width of the table display (in device units). (Can be overridden by n-
rows.)

max-height

Specifies the maximum height of the table display (in device units). (Can be overridden by n-
columns.)

stream-width

The width of the stream (in device units).

stream-height

The height of the stream (in device units).

move-cursor

When t, CLIM moves the cursor to the end of the table. The default is t.

format-items [Function]

Arguments: items &key (stream *standard-output*) printer presentation-
type x-spacing y-spacing initial-spacing n-rows n-columns
max-width max-height (row-wise t) record-type (cell-align-x
':left) (cell-align-y ':top)

■ Provides tabular formatting of a list of items. Each item in items is formatted as a separate cell

within the table. items can be a list or a general sequence. format-items is a convenient func-

tional interface to formatting-item-list.
CLIM 2.2 User Guide 237

■ The stream, x-spacing, y-spacing, initial-spacing, n-rows, n-columns,

max-width, max-height, row-wise, and record-type arguments are the same as for

formatting-item-list.

■ Note that you must supply either printer or presentation-type. Those arguments and

the rest are as follows;

printer

A function that takes two arguments, an item and a stream. It should output the item to the stream.

Note that you cannot use this keyword option with presentation-type.

presentation-type

A presentation type. Note that you cannot use this keyword option with printer.

The items will be printed as if printer were:

#'(lambda (item stream) (clim:present item presentation-type :stream stream))

cell-align-x

Supplies align-x to an implicitly used formatting-cell.

cell-align-y

Supplies align-y to an implicitly used formatting-cell.

Note that format-items is similar to formatting-item-list. Both operators do the same

thing, except they accept their input differently:

• formatting-item-list accepts its input as a body that calls formatting-cell for

each item.

• format-items accepts its input as a list of items with a specification of how to print them.

Note that menus use the one-dimensional table formatting model.

11.3.3 More examples of CLIM table formatting

Formatting a table from a list
 The example1 function formats a simple table whose contents come from a list.

(defvar *alphabet* ’(a b c d e f g h i j k l m n o p q r s t u v w x y z))

(defun example1 (&optional (items *alphabet*)
 &key (stream *standard-output*)
 (n-columns 6) x-spacing y-spacing)
 (clim:formatting-table (stream :x-spacing x-spacing
 :y-spacing y-spacing)
 (do () ((null items))
 (clim:formatting-row (stream)
 (do ((i 0 (1+ i)))
 ((or (null items) (= i n-columns)))
 (clim:formatting-cell (stream)
 (format stream "~A" (pop items))))))))

Evaluate

(example1 *alphabet* :stream *test-pane*)
238 CLIM 2.2 User Guide

You should see this table:

The table above shows the result of evaluating example1 form without providing the x-spacing and

y-spacing keywords. The defaults for these keywords makes tables whose elements are characters look

reasonable.

You can easily vary the number of columns, and the spacing between rows or between columns. In the

following example, we provide keyword arguments that change the appearance of the table.

Evaluating this form

(example1 *alphabet* :stream *test-pane* :n-columns 10
 :x-spacing 10 :y-spacing 10)

shows this table:

(Note that this example can be done with formatting-item-list as shown in example4 later on

in this section.)

Formatting a table representing a calendar month
The calendar-month function shows how you can format a table that represents a calendar month. The

first row in the table acts as column headings representing the days of the week. The following rows are

numbers representing the day of the month.

This example shows how you can align the contents of a cell. The column headings (Sun, Mon, Tue, etc.)

are centered within the cells. However, the dates themselves (1, 2, 3, ... 31) are aligned to the right edge of

the cells. The resulting calendar looks good, because the dates are aligned in the natural way.

(setq *day-of-week-string* (make-array 7 :initial-contents
(list "Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat")))

(defparameter *month-lengths* (vector 31 28 31 30 31 30 31 31 30 31 30 31))
(defun month-length month year)
 (declare (special *month-lengths*))
 (if (/= month 2) (aref *month-lengths* (- month 1))
 (if (null (zerop (mod year 4))) 28
 (if (null (zerop (mod year 400))) 29 28))))
(defun calendar-month (month year &key (stream *standard-output*))
 (declare (special *day-of-week-string*))
 (let ((days-in-month (time:month-length month year)))
 (multiple-value-bind (n1 n2 n3 n4 n5 n6 start-day)
 (decode-universal-time (encode-universal-time
 0 0 0 1 month year))
 (setq start-day (mod (+ start-day 1) 7))
 (clim:formatting-table (stream)
 (clim:formatting-row (stream)
CLIM 2.2 User Guide 239

 (dotimes (d 7)
 (clim:formatting-cell (stream :align-x :center)
 (write-string (aref *day-of-week-string* (mod d 7)) stream))))
 (do ((date 1)
 (first-week t nil))
 ((> date days-in-month))
 (clim:formatting-row (stream)
 (dotimes (d 7)
 (clim:formatting-cell (stream :align-x :right)
 (when (and (<= date days-in-month)
 (or (not first-week) (>= d start-day)))
 (format stream "~D" date)
 (incf date))))))))))

Evaluate

(calendar-month 5 90 :stream *test-pane*)

You should see this table:

Formatting a table with regular graphic elements
The example2 function shows how you can draw graphics within the cells of a table. Each cell contains

a rectangle of the same dimensions.

(defun example2 (&key (stream *standard-output*) x-spacing y-spacing)
 (clim:formatting-table (stream :x-spacing x-spacing
 :y-spacing y-spacing)
 (dotimes (i 3)
 (clim:formatting-row (stream)
 (dotimes (j 3)
 (clim:formatting-cell (stream)
 (clim:draw-rectangle* stream 10 10 50 50)))))))

Evaluate

(example2 :stream *test-pane* :y-spacing 5)

You should see this table:
240 CLIM 2.2 User Guide

Formatting a table with irregular graphics in the cells
The example3 function shows how you can format a table in which each cell contains graphics of different

sizes.

(defun example3 (&optional (items *alphabet*)
 &key (stream *standard-output*)
 (n-columns 6) x-spacing y-spacing)
 (clim:formatting-table (stream :x-spacing x-spacing
 :y-spacing y-spacing)
 (do () ((null items))
 (clim:formatting-row (stream)
 (do ((i 0 (1+ i)))
 ((or (null items) (= i n-columns)))
 (clim:formatting-cell (stream)
 (clim:draw-polygon* stream
 (list 0 0 (* 10 (1+ (random 3)))
 5 5 (* 10 (1+ (random 3))))
 :filled nil)
 (pop items)))))))

Evaluate

(example3 *alphabet* :stream *test-pane*)

You should see something like this table:

Formatting a table of a sequence of items: clim:formatting-item-list
The example4 function shows how you can use formatting-item-list to format a table of a

sequence of items, when the exact arrangement of the items and the table is not important. Note that you

use formatting-cell inside the body of formatting-item-list to output each item. You do not

use formatting-column or formatting-row, because CLIM figures out the number of columns

and rows automatically (or obeys a constraint given in a keyword argument).

(defun example4 (&optional (items *alphabet*)
 &key (stream *standard-output*) n-columns n-rows
 x-spacing y-spacing max-width max-height)
 (clim:formatting-item-list
 (stream :x-spacing x-spacing :y-spacing y-spacing
CLIM 2.2 User Guide 241

 :n-columns n-columns :n-rows n-rows
 :max-width max-width :max-height max-height)
 (do () ((null items))
 (clim:formatting-cell (stream)
 (format stream "~A" (pop items))))))

Evaluate

(example4 *alphabet* :stream *test-pane*)

You should see this table:

You can easily add a constraint specifying the number of columns. Evaluate

 (example4 *alphabet* :stream *test-pane* :n-columns 8)

You should see this table:

11.4 Formatting graphs in CLIM

When you need to format a graph, you specify the nodes to be in the graph, and the scheme for organizing

them. CLIM's graph formatter does the layout automatically, obeying any constraints that you supply.

You can format any directed, acyclic graph (DAG). ‘Directed’ means that the arcs on the graph have a

direction. ‘Acyclic’ means that there are no loops in the graph. You can also format many graphs with

cycles.

Here is an example of such a graph:

To specify the elements and the organization of the graph, you provide to CLIM the following informa-

tion:
242 CLIM 2.2 User Guide

• The root node or nodes.

• A ‘object printer’, a function used to display each object. The function is passed the object

associated with a node and the stream on which to do output.

• An ‘inferior producer’, a function which takes one node and returns its inferior nodes (the nodes

to which it points).

Based on that information, CLIM lays out the graph for you. You can specify a number of options that con-

trol the appearance of the graph. For example, you can specify whether you want the graph to grow verti-

cally (downward) or horizontally (to the right). Note that CLIM's algorithm does the best layout it can, but

complicated graphs can be difficult to lay out in a readable way.

11.4.1 Examples of CLIM graph formatting

These fairly simple examples do illustrate important aspects of the grapher functionality. Basically, we

define an object called a node. Each node has a name and a list of children. Therefore, with a node, we can

draw a graph by drawing the node and then (recursively) its children. First, we define the node object:

(defstruct node
 (name "")
 (children nil))

Now we define a node (with children) that will be used as a root node. Notice that nodes 1A and 1B both

have node 2B as a child.

(defvar g1-dag (let* ((2a (make-node :name "2A"))
 (2b (make-node :name "2B"))
 (2c (make-node :name "2C"))
 (1a (make-node :name "1A" :children (list 2a 2b)))
 (1b (make-node :name "1B" :children (list 2b 2c))))
 (make-node :name "0" :children (list 1a 1b))))

The following function draws the graph. We have provided an &rest argument so we can specify key-

word arguments to format-graph-from-root. (We use this function also in examples for format-
graph-from-roots since that function differs from format-graph-from-root only in allowing

more than one root node.)

(defun test-graph (root-node &rest keys)
 (apply #’clim:format-graph-from-root root-node
 #’(lambda (node s)
 (write-string (node-name node) s))
 #’node-children
 keys))

Let us test this function. Evaluate

(test-graph g1 :stream *test-pane*)
CLIM 2.2 User Guide 243

You should see the following graph, which we call:

This graph shows what is drawn when all the defaults for the various keyword arguments to format-
graph-from-root are used. As we discuss the arguments themselves, we show how this graph is

affected by the arguments.

11.4.2 CLIM operators for graph formatting

format-graph-from-roots [Function]

Arguments: root-objects object-printer inferior-producer
&key (stream *standard-output*) (orientation :horizontal)
center-nodes cutoff-depth merge-duplicates graph-type
duplicate-key duplicate-test arc-drawer arc-drawing-options
generation-separation within-generation-separation
maximize-generations (store-objects t) (move-cursor t)

■ Draws a graph whose roots are specified by the sequence root-objects. The nodes of the

graph are displayed by calling the function object-printer, which takes two arguments, the

node to display and a stream. inferior-producer is a function of one argument that is called

on each node to produce a sequence of inferiors (or nil if there are none). Both object-
printer and inferior-producer have dynamic extent.

If the object-printer function will output newlines, you must ensure that the cursor posi-

tion of the stream is (0,0). You can do this by evaluating

(setf (stream-cursor-position stream) (values 0 0))

The output from graph formatting takes place in a normalized +y-downward coordinate system.

The graph is placed so that the upper left corner of its bounding rectangle is at the current text cursor

position of stream. If the boolean move-cursor is t (the default), then the text cursor will be

moved so that it immediately follows the lower right corner of the graph.

The returned value is the output record corresponding to the graph.

■ The arguments are as follows:

stream

is the stream to which the output is done. It defaults to *standard-output*.

orientation

may be either :horizontal (the default) or :vertical. It specifies which way the graph is

oriented. The graph in Graph example 1 above uses the default (:horizontal). Here we spec-

ify :vertical as the orientation:

(test-graph g1 :stream *test-pane* :orientation :vertical)
244 CLIM 2.2 User Guide

Thi produces the graph on the right (the default behavior is shown on the left):

cutoff-depth

specifies the maximum depth of the graph. It defaults to nil, meaning that there is no cutoff

depth. Otherwise it must be a positive integer, meaning that no nodes deeper than cutoff-
depth will be formatted or displayed. Our example has three levels (1, 2, and 3). Here is the

effect of setting this argument:

(test-graph g1 :stream *test-pane* :cutoff-depth 1)
(test-graph g1 :stream *test-pane* :cutoff-depth 2)
(test-graph g1 :stream *test-pane* :cutoff-depth 3)

merge-duplicates

If the boolean merge-duplicates is t, then duplicate objects in the graph will share the same

node in the display of the graph. Thus, when merge-duplicates is nil (the default), the

resulting graph will be a tree and duplicate objects will be displayed in separate nodes.

duplicate-key

is a function of one argument that is used to extract the node object component used for duplicate

comparison; the default is identity. Suppose in our example we were just interested in whether

a node had any child whose name begins with ‘2’, but we are not concerned with which one. We

could write a function that would make all such nodes duplicates. The following uses the Common

:orientation :horizontal or
unspecified

:orientation :vertical

:cutoff-depth 1 :cutoff-depth unspeci-
fied (same as 3 in this
example)

:cutoff-depth 2 :cutoff-depth 3

:merge-duplicates nil
(the default)

:merge-duplicates t
CLIM 2.2 User Guide 245

Lisp function identity when 2 is not the first character but makes all nodes with 2 as the first

character duplicate:

(defun my-dup (a b)

 (let ((a1 (first (node-name a)))

 (b1 (first (node-name b))))

 (if (null (eql a1 #\2) (identity a b) (eql #\2 b2))))

duplicate-test

is a function of two arguments that is used to compare two objects to see if they are duplicates;

the default is eql. duplicate-key and duplicate-test have dynamic extent.

generation-separation

the amount of space between successive generations of the graph; (default 20). Here is the effect:

within-generation-separation

amount of space to leave between nodes in the same generation of the graph (default 10).

generation-separation and within-generation-separation are specified in

the same way as the inter-row-spacing argument to formatting-table.

center-nodes

When center-nodes is t, each node of the graph is centered with respect to the widest node

in the same generation. The default is nil.

arc-drawer

The value of this argument should be a function that actually does the work or drawing the arcs

connecting the nodes. This function should have the following argument list:

(stream from-node to-node x1 y1 x2 y2 &rest drawing-options

 &key path draw-nodes &allow-other-keys)

The keyword arguments :path and :draw-nodes need not be specified so long as &allow-
other-keys is present. However, the system will call the arc-drawer function with those

keyword arguments.

The arc goes from (x1,y1) to (x2,y2). The simplest behavior is to draw s straight line connecting

the two points. Thus, if no value is specified for this argument, the default behavior is to draw a

thin line from the from-node to the to-node using draw-line*. However, your arc-draw-

ing function can be more powerful. Intermediate points can be passed as the value of the :path
argument (it will be a list of the form (xi1, yi1, xi2, yi2, ... xin, yin), where (xi,yi) specify the inter-

mediate points).

Note that the arc drawing function will get the from- and to- node's objects only if store-
objects is t. Otherwise, CLIM cannot determine what object to pass to the arc drawing func-

tion.

:generation-separation 20
(the default)

:generation-separation 5 :generation-separation 50
246 CLIM 2.2 User Guide

arc-drawing-options

contains keyword arguments that will be passed to the arc drawing function. These will be line

drawing options, such as for draw-line*.

graph-type

is a keyword that specifies the type of graph to draw. All CLIM implementations must support

graphs of type :tree, :directed-graph (and its synonym :digraph), and :directed-
acyclic-graph (and its synonym :dag). graph-type defaults to :digraph when

merge-duplicates is t, otherwise it defaults to :tree. Currently, there are two formatting

engines, one for simple trees and one for all other DAGs.

Here is an example of code that, given a list of CLOS classes, displays the directed graph of all of those

classes subclasses.

(defun graph-classes (classes &optional (orientation :horizontal)
 (stream *standard-output*))
 (clim:format-graph-from-roots
 (mapcar #’find-class classes)
 #’(lambda (class stream)
 (clim:surrounding-output-with-border (stream)
 (format stream "~S" (class-name class))))
 #’class-direct-subclasses
 :merge-duplicates t :orientation orientation
 :stream stream))

format-graph-from-root [Function]

Arguments: root-object object-printer inferior-producer &key stream
orientation center-nodes cutoff-depth merge-duplicates
graph-type key test arc-drawer arc-drawing-options
generation-separation within-generation-separation
maximize-generations store-objects move-cursor

■ This function is exactly like format-graph-from-roots, except that root-object is a

single root object. key and test are used as the duplicate key and duplicate test.

Some notes on graphing
The grapher can introduce fake nodes -- circular graph connectors, and edge splitters. Under some situations

the arc drawer will be called to draw arcs between these nodes. In that case, the class of from/to object will

be clim-internals::grapher-fake-object.

The grapher uses the arc drawing function to edge-splitting nodes. In this situation, it is called with

:draw-node t. The :path argument is used to specify intermediate points on the edge.

11.5 Formatting text in CLIM

CLIM provides the following forms for breaking up lengthy output into multiple lines and for indenting out-

put.

format-textual-list [Function]

Arguments: sequence printer &key (stream *standard-output*)
(separator ", ") conjunction

■ Outputs a sequence of items as a textual list. For example, the list
CLIM 2.2 User Guide 247

(1 2 3 4)

will be printed as the following when the printer function is princ and :conjunction is "and".

1, 2, 3, and 4

■ The arguments provide control over the appearance of each element of the sequence and over the

separators used between each pair of elements. The separator string is output after every element but

the last one. The conjunction is output before the last element.

sequence

The sequence to output.

printer

is a function of two arguments: an element of the sequence and a stream. It is used to output each

element of the sequence. Typical values are #’princ or #’prin1 if you do not want to write

your own specialized printer.

stream

Specifies the output stream. The default is *standard-output*.

separator

Specifies the characters to use to separate elements of a textual list. The default is ", " (comma

followed by a space).

conjunction

Specifies a string to use in the position between the last two elements. Typical values are "and"

and "or". The default is no conjunction.

For example, the form used to get the result above is:

(clim:format-textual-list '(1 2 3 4) #'princ :conjunction "and")

The filling-output macro described next allows you to restrict formatted text to (more or less) a

specified width. We say ‘more or less’ because filling-output will not break words across lines, so some

lines can be longer than the specified width. Our examples will use part of the Gettysburg address:

(defvar *gettysburg-address*
 (concatenate ’string
 "Fourscore and seven years ago our forefathers brought forth "
 "on this continent a new nation, conceived in Liberty, and "
 "dedicated to the proposition that all men are created equal. "
 "Now we are engaged in a great civil war, testing whether that "
 "nation, or any nation so conceived and so dedicated, can long "
 "endure."))

Here is filling-output called with its defaults. Compare this example with the examples in the function

definition where non-default values are supplied.

CLIM-USER(139): (filling-output
 (*standard-output*)
 (write-string *gettysburg-address*))
Fourscore and seven years ago our forefathers brought forth on this continent a
new nation, conceived in Liberty, and dedicated to the proposition that all men
are created equal. Now we are engaged in a great civil war, testing whether that
nation, or any nation so conceived and so dedicated, can long endure.
NIL
248 CLIM 2.2 User Guide

filling-output [Macro]

Arguments: (&optional stream &key (fill-width '(80 :character))
break-characters after-line-break
after-line-break-initially)
&body body

■ Binds local environment stream (the default is *standard-output*) to a stream that

inserts line breaks into the output written to it so that the output is usually no wider then fill-
width. The filled output is then written on the stream that is the original value of stream.

filling-output does not split words across lines, so it can produce output wider than fill-
width.

■ Words are separated by the characters indicated by break-characters. break-
characters defaults to (#\Space) When a line is broken to prevent wrapping past the end of a

line, the line break is made at one of these separators.

■ The arguments are as follows:

stream

The output stream; the default is *standard-output*.

fill-width

Specifies the width of filled lines. The default is 80 characters. It can be specified in one of the

following ways:

as a list of the form (number unit), where unit is one of

:pixel The width in pixels.

:point The width in printers points.

:character The width of "M" in the current text style.

as an integer; the width in device units (for example, pixels).

as a string; the spacing is the width of the string.

as a function; the spacing is the amount of space the function would consume when called on

the stream.

Here are two example where fill-width is specified, first as 60 characters, then as the width of the

string "The Gettysburg Address":

CLIM-USER(140): (filling-output

 (*standard-output* :fill-width ’(60 :character))

 (write-string *gettysburg-address*))

Fourscore and seven years ago our forefathers brought forth

on this continent a new nation, conceived in Liberty, and

dedicated to the proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether

that nation, or any nation so conceived and so dedicated,

can long endure.

NIL

CLIM-USER(141): (filling-output

 (*standard-output* :fill-width "The Gettysburg
Address")

 (write-string *gettysburg-address*))

Fourscore and seven

years ago our
CLIM 2.2 User Guide 249

forefathers brought

forth on this

continent a new

nation, conceived in

Liberty, and dedicated

to the proposition

that all men are

created equal. Now we

are engaged in a great

civil war, testing

whether that nation,

or any nation so

conceived and so

dedicated, can long

endure.

NIL

break-characters

Specifies a list of characters at which to break lines.

after-line-break

Specifies a string to be sent to stream after line breaks; the string appears at the beginning of

each new line. The string must not be wider than fill-width.

In this example, after-line-break is given the value "GA> ". Note that this is not printed on

the first line. See the after-line-break-initially below. Also note that the "GA> " is

counted in determining the width:

CLIM-USER(142): (filling-output

 (*standard-output* :fill-width "The Gettysburg
Address"

 :after-line-break "GA> ")

 (write-string *gettysburg-address*))

Fourscore and seven

GA> years ago our

GA> forefathers

GA> brought forth on

GA> this continent a

GA> new nation,

GA> conceived in

GA> Liberty, and

GA> dedicated to the

GA> proposition that

GA> all men are

GA> created equal. Now

GA> we are engaged in

GA> a great civil war,

GA> testing whether

GA> that nation, or
250 CLIM 2.2 User Guide

GA> any nation so

GA> conceived and so

GA> dedicated, can

GA> long endure.

NIL

after-line-break-initially

Boolean option specifying whether the after-line-break text is to be written to stream
before doing body, that is, at the beginning of the first line; the default is nil. Recall from the

example just above, "GA> " was not printed on the first line. When we specify this argument true,

it is (we truncate the example to save space -- after the first line it is identical to the above):

CLIM-USER(143): (filling-output

 (*standard-output*

 :fill-width "The Gettysburg Address"

 :after-line-break "GA> "

 :after-line-break-initially t)

 (write-string *gettysburg-address*))

GA> Fourscore and

GA> years ago our

GA> forefathers

GA> brought forth on

GA> this continent a

[... lines deleted to save paper -- see example above ...]

NIL

Here is an example of using format-textual-list with filling-output.

(let ((stream *standard-output*)
 (data (let ((result nil))
 (dotimes (i 20) (push i result))
 (nreverse result))))
 (clim:filling-output (stream :fill-width ’(30 :character)
 :after-line-break " ")
 (clim:format-textual-list data #’princ
 :stream stream
 :separator ", " :conjunction "and")
 (write-char #˙ stream)))

indenting-output [Function]

Arguments: (stream indentation &key (move-cursor t)) &body body

■ Binds stream to a stream that inserts whitespace at the beginning of each line, and writes the

indented output to the stream that is the original value of stream.

■ The arguments are as follows:

stream

The output stream. As a special case, t is an abbreviation for *standard-output*.

indentation

What gets inserted at the beginning of each line output to the stream. Four possibilities exist:
CLIM 2.2 User Guide 251

integer

The width in device units (for example, pixels).

string

The spacing is the width of the string.

function

The spacing is the amount of space the function would consume when called on the stream.

list

The list is of the form (number unit), where unit is one of

:pixel The width in pixels.

:point The width in printers points.

:character The width of "M" in the current text style.

move-cursor

When t, CLIM moves the cursor to the end of the table. The default is t.

■ You should begin the body with (terpri stream), or equivalent, to position the stream to the

indentation initially. That is, it is perfectly valid to indent only subsequent lines.

■ Note: if you use indenting-output in conjunction with filling-output, you should

put the call to indenting-output outside of the call to filling-output.

For example, if you want to indent the Gettysburg address above, you could do the following:

(clim:indenting-output (*standard-output* ’(2 :character))
 (clim:filling-output (*standard-output* :fill-width ’(60 :character))
 (write-string *gettysburg-address* *standard-output*)))

with-aligned-prompts [Macro]

Arguments: (stream &key :align-prompts) &body body

■ This macro causes all accepts in the body to be aligned if :align-prompts is non-nil. This

macro deals with nesting as follows: if the :align-prompts argument is given as nil in a con-

text where :align-prompts is non-nil (typically specified in a call to accepting-values)

then vanilla output can be performed within the body.

11.6 Bordered output in CLIM

CLIM provides a mechanism for surrounding arbitrary output with some kind of a border. To specify that

a border should be generated, you surround some code that does output with surrounding-output-
with-border, an advisory macro that describes the type of border to be drawn.

surrounding-output-with-border [Macro]

Arguments: (&optional stream
&key (shape ':rectangle) &allow-other-keys)
&body body

■ Binds the local environment in such a way that the output of bodywill be surrounded by a border

of the specified shape. The default shape is :rectangle. Keyword arguments acceptable to

drawing functions (such as :ink and :filled) can also be specified.

■ This macro cannot be used within formatting-table. It is very unlikely that this restric-

tion will ever go away.
252 CLIM 2.2 User Guide

define-border-type [Macro]

Arguments: shape arglist &body body

■ Defines a new kind of border named shape. arglist will typically be (stream record
left top right bottom).

■ body is the code that actually draws the border. It has lexical access to stream, record, left,

top, right, and bottom, which are respectively, the stream being drawn on, the output record

being surrounded, and the coordinates of the left, top, right, and bottom edges of the bounding rect-

angle of the record.

■ Note that the predefined border types, :rectangle, :oval, :drop-shadow, and :under-
line are defined using this macro.

For example, the following produces a piece of output surrounded by a rectangle.

(defun bordered-triangle (stream)
 (clim:surrounding-output-with-border (stream :shape :rectangle)
 (clim:draw-polygon* stream ’(40 120 50 140 30 140))))

The following is the result of evaluating (bordered-triangle *test-pane*):
CLIM 2.2 User Guide 253

[This page intentionally left blank.]
254 CLIM 2.2 User Guide

Chapter 12 Hardcopy streams in
CLIM

It is often useful for an application to produce stream and medium output in a hardcopy form. CLIM sup-

ports hardcopy output through the with-output-to-postscript-stream macro.

Note that CLIM does not support doing output to one stream, and then replaying the output on another

stream. This means that, rather than replaying output records to a hardcopy stream, you must regenerate the

output to the hardcopy stream.

12.1 Function for doing PostScript output

with-output-to-postscript-stream [Macro]

Arguments: (stream-var file-stream &key device-type multi-page scale-
to-fit header-comments (orientation :portrait)) &body body

■ Within body, stream-var is bound to a stream that produces PostScript code. This stream is

suitable as a stream or medium argument to any of the CLIM output utilities, including the formatted

output facilities. A PostScript program describing the output to the stream-var stream will be

written to file-stream. stream-var must be the name of a variable.

■ The arguments are as follows:

device-type

A symbol that names some sort of PostScript display device. It defaults to the device type for an

Apple LaserWriter.

multi-page

A boolean value that specifies whether or not the output should be broken into multiple pages if

it is larger than one page. How the output is broken into multiple pages, and how these multiple

pages should be pieced together is unspecified. The default is nil.

scale-to-fit

A boolean that specifies whether or not the output should be scaled to fit on a single page if it is

larger than one page. The default is nil. It is an error if multi-page and scale-to-fit are

both supplied as t.

orientation

One of :portrait (the default) or :landscape. It specifies how the output should be ori-

ented. :portrait-style output has the long dimension of the paper along the vertical axis;

:landscape-style output has the long dimension of the paper along the horizontal axis.

header-comments

allows the programmer to specify some PostScript header comment fields for the resulting Post-

Script output. The value of header-comments is a list consisting of alternating keyword and

value pairs. These are the supported keywords:
CLIM 2.2 User Guide 255

:title

Specifies a title for the document, as it will appear in the "%%Title:" header comment.

:for

Specifies who the document is for. The associated value will appear in a "%%For:" docu-

ment comment.

■ Note: The PostScript programs written by this implementation of CLIM do not strictly conform

to the conventions described under Appendix C: Structuring Conventions of the PostScript Lan-
guage Reference Manual. Software tools which attempt to determine information about these Post-

Script programs based on "\%\%" comments within them may be unsuccessful.

new-page [Function]

Arguments: stream

IMPLEMENTATION LIMITATION: This function is not supported n the current release.

■ This function is designed to send all of the currently collected output to the related file stream,

emit a PostScript showpage command, and reset the PostScript stream to have no output.

12.2 Examples of Doing PostScript Output

This example writes a PostScript program which draws a square, a circle and a triangle to a file named

icons-of-high-tech.ps.

(defun print-icons-of-high-tech-to-file ()
 (with-open-file (file-stream "icons-of-high-tech.ps" :direction :output)
 (clim:with-output-to-postscript-stream (stream file-stream)
 (let* ((x1 150) (y 250) (size 100)
 (x2 (+ x1 size))
 (radius (/ size 2))
 (base-y (+ y (/ (* size (sqrt 3)) 2))))
 (clim:draw-rectangle*
 stream (- x1 size) (- y size) x1 y)
 (clim:draw-circle*
 stream (+ x2 radius) (- y radius) radius)
 (clim:draw-triangle*
 stream (+ x1 radius) y x1 base-y x2 base-y)))))

This example uses multi-page mode to draw a graph of the subclasses of the class bounding-
rectangle by writing a PostScript program to the file class-graph.ps. The use of :multi-page t

causes CLIM to split this rather large graph up into multiple pages.

(with-open-file (file "class-graph.ps" :direction :output)
 (clim:with-output-to-postscript-stream (stream file :multi-page t)
 (clim:format-graph-from-root
 (find-class ’clim:bounding-rectangle)
 #’(lambda (object s)
 (write-string (string (class-name object)) s))
 #’class-direct-subclasses
 :stream stream)))
256 CLIM 2.2 User Guide

Chapter 13 Menus and dialogs in
CLIM

13.1 Concepts of menus and dialogs in CLIM

CLIM provides three powerful menu interaction routines for allowing user interfacing through pop-up

menus and dialogs, and menus and dialogs embedded in an application window:

• menu-choose is a straightforward menu generator that provides a quick way to construct

menus. You can call it with a list of menu items. For a complete definition of menu item, see the

function menu-choose. This calls frame-manager-menu-choose to do most of its work;

often, the frame manager can use a native menu.

• menu-choose-from-drawer is a lower level routine that allows the user much more control

in specifying the appearance and layout of a menu. You can call it with a window and a drawing

function. Use this function for more advanced, customized menus.

• accepting-values provides the ability to build a dialog. You can specify several items that

can be individually selected or modified within the dialog before dismissing it and in this way it

differs from menu-choose and menu-choose-from-drawer, both of which allow you to

select one thing only.

13.2 Operators for menus in CLIM

You can use the following functions to get user input via a menu.

menu-choose [Function]

Arguments: items &key associated-window cache cache-value
cache-test cell-align-x cell-align-y default-item
id-test label max-height max-width
n-columns n-rows pointer-documentation
presentation-type printer text-style unique-id
x-spacing y-spacing

■ Displays a menu with the choices in items. This function returns three values: the value of the

chosen item, the item itself, and the event corresponding to the gesture that the user used to select it.

items can be a list or a general sequence. This function returns nil for all values if the menu is

aborted by burying it.
CLIM 2.2 User Guide 257

■ items should be a list of menu items. Each menu item has a visual representation derived from

a display object, an internal representation which is a value object (this is the first item returned by

menu-choose), and a (possibly empty) set of menu item options. The form of a menu item is one

of the following:

The menu item options are:

The visual representation of an item depends on the printer and presentation-type key-

word arguments. If presentation-type is specified, the visual representation is produced by

present of the menu item with that presentation type. Otherwise, if printer is specified, the

visual representation is produced by the printer function which receives two arguments, the

item and a stream to write on. The printer function should output some text or graphics at the

stream's cursor position, but need not call present. If neither presentation-type nor

an atom The item is both the display object and the value object.

a cons The car is the display object and the cdr is the value object. The

value object must be an atom. If you need to return a non-atom as

the value, specify the item as a list and use the :value option.

a list The car is the display object and the cdr is a list of alternating

option keywords and values. The value object is specified with the

keyword :value and defaults to the display object if :value is

not present.

:value Specifies the value object.

:text-style Specifies the text style used to princ the display object

when neither :presentation-type nor :printer
is specified.

:items Specifies an item list for a sub-menu used if this item is

selected.

:documentation Associates some documentation with the menu item.

When :pointer-documentation is not nil, it

will be used a pointer documentation for the item.

:active When true (the default), indicates the item is active, that

is can be selected. When false, the item is inactive and

cannot be selected. CLIM will generally provide some

visual indication that an item is inactive (for example,

graying over the item).

:type Specifies the type of the item. Possible values are

:item (the default) indicating that the item is a normal

menu item;

:label, indicating the item is simply an inactive label

(labels are not grayed over as are inactive items);

:divider, indicating that the item serves as a divider

between groups of other items (divider items will usually

be drawn as a horizontal line).
258 CLIM 2.2 User Guide

printer is specified, the visual representation is produced by princ of the display object. Note

that if :presentation-type or :printer is specified, the visual representation is produced

from the entire menu item, not just from the display object.

The keyword arguments to menu-choose are:

:associated-window The CLIM window the menu is associated with. This

defaults to the top-level window of the current application

frame.

:cache Indicates whether CLIM should cache this menu for later

use. If t, then unique-id and id-test serve to

uniquely identify this menu. Caching menus can speed up

later uses of the same menu.

:cache-test The function that compares cache-values. It defaults

to equal.

:cache-value If cache is non-nil, this is the value that is compared to

see if the cached menu is still valid. Defaults to items,

but you may be able to supply a more efficient cache

value than that.

:cell-align-x Specifies the horizontal placement of the contents of the

cell. Can be one of: :left, :right, or :center. The

default is :left.

:cell-align-y Specifies the vertical placement of the contents of the

cell. Can be one of: :top, :bottom, or :center. The

default is :top.

:default-item The menu item where the mouse will appear.

:id-test The function that compares unique-ids. It defaults to

equal.

:label The string that the menu title will be set to.

:max-height Specifies the maximum height of the table display (in

device units). (Can be overridden by n-columns.)

:max-width Specifies the maximum width of the table display (in

device units). (Can be overridden by n-rows.)

:n-columns Specifies the number of columns.

:n-rows Specifies the number of rows.

:pointer-documentation Either nil (the default), meaning the no pointer

documentation should be computed, or a stream on which

pointer documentation should be displayed.

:presentation-type Specifies the presentation type of the menu items.
CLIM 2.2 User Guide 259

■ CLIM will always use a native Motif menu.

■ See the section 135 Examples of menus and dialogs in CLIM.

menu-choose-from-drawer [Function]

Arguments: menu type drawer &key x-position y-position cache unique-id
(id-test #'equal) (cache-value t) (cache-test #'eql) leave-
menu-visible default-presentation

■ A lower-level routine for displaying menus. It allows the user much more flexibility in the menu

layout. Unlike menu-choose, which automatically creates and lays out the menu, menu-
choose-from-drawer takes a programmer-provided window and drawing function. Then it

draws the menu items into that window using the drawing function. The drawing function gets called

with arguments (stream type). stream of course specifies the stream on which to draw but

type is available for the drawing function to use for its own purposes, the usual being using it for

present.

menu-choose-from-drawer returns two values; the object the user clicked on, and the

gesture.

You can create a temporary window for drawing their menu using with-menu.

Note that, when enabled by *abort-menus-when-buried*, this function returns nil for

all values if the menu is aborted by burying it.

menu

The CLIM window to use for the menu.

:printer The function used to print the menu items in the menu.

The function should take two arguments, the menu item

and the stream to print it to.

:text-style A text style that defines how the menu items are pre-

sented.

:unique-id If cache is non-nil, this is used to identify the menu. It

defaults to the items, but can be set to a more efficient

tag.

:x-spacing Determines the amount of space inserted between col-

umns of the table; the default is the width of a space char-

acter. Can be specified in one of the following ways:

Integer A size in the current units used for spacing.

String or character The spacing is the width or height of

the string or character in the current text style.

Function The spacing is the amount of horizontal or verti-

cal space the function would consume when called on the

stream.

List of form (number unit) where unit is :point,

:pixel, or :character.

:y-spacing Specifies the amount of blank space inserted between

rows of the table; the default is the vertical spacing for the

stream. The possible values for this option are the same as

for the x-spacing option.
260 CLIM 2.2 User Guide

type

The presentation type of the mouse-sensitive items in the menu. This is the input context that will

be established once the menu is displayed. For users who don't need to define their own types, a

useful presentation-type is menu-item.

drawer

A function that takes arguments (stream type) that draws the contents of the menu.

x-position

The requested left edge of the menu (if supplied).

y-position

The requested top edge of the menu (if supplied).

leave-menu-visible

If non-nil, the window will not be de-exposed once the selection has been made. The default is

nil, meaning that the window will be de-exposed once the selection has been made.

default-presentation

Identifies the presentation that the mouse is pointing to when the menu comes up.

cache

unique-id

id-test

cache-value

cache-test

are as for menu-choose.

■ See the section 13.5 Examples of Menus and Dialogs in CLIM.

draw-standard-menu [Function]

Arguments: menu presentation-type items default-item &key (item-
printer #'clim:print-menu-item) max-width max-height n-rows
n-columns x-spacing y-spacing row-wise
(cell-align-x ':left) (cell-align-y ':top)

■ draw-standard-menu is the function used by CLIM to draw the contents of a menu, unless

the current frame manager determines that host window toolkit should be used to draw the menu

instead. menu is the stream onto which to draw the menu, presentation-type is the presenta-

tion type to use for the menu items (usually menu-item), and item-printer is a function used

to draw each item.

The other arguments are as for menu-choose.

print-menu-item [Function]

Arguments: menu-item &optional (stream *standard-output*)

■ Given a menu item menu-item, display it on the stream stream. This is the function that

menu-choose uses to display menu items if no printer is supplied.

with-menu [Macro]

Arguments: (menu &optional associated-window &rest options &key label
scroll-bars) &body body

■ Binds menu to a temporary window, exposes the window on the same screen as the associ-
ated-window, runs the body, and then de-exposes the window. The values returned by with-
menu are the values returned by body.
CLIM 2.2 User Guide 261

menu

The name of a variable which is bound to the window to be used for the menu.

associated-window

A window that this window is associated with, typically a pane of an application frame. If not

supplied, associated-windowwill default to the top-level window of the current application

frame.

This example shows how to use with-menu with menu-choose-from-drawer to draw a tempo-

rary menu.

(defun choose-compass-direction ()
 (labels ((draw-compass-point (stream ptype symbol x y)
 (clim:with-output-as-presentation (stream symbol ptype)
 (clim:draw-text* stream (symbol-name symbol)
 x y
 :align-x :center
 :align-y :center
 :text-style ’(:sans-serif :roman :large))))
 (draw-compass (stream ptype)
 (clim:draw-line* stream 0 25 0 -25
 :line-thickness 2)
 (clim:draw-line* stream 25 0 -25 0
 :line-thickness 2)
 (loop for point in ’((n 0 -30) (s 0 30)
 (e 30 0) (w -30 0))
 do (apply #’draw-compass-point
 stream ptype point))))
 (clim:with-menu (menu)
 (clim:menu-choose-from-drawer
 menu ’clim:menu-item #’draw-compass))))

with-menu can also be used to allocate a temporary window for other uses.

13.3 Operators for dealing with dialogs in CLIM

You can use the following functions and macros to create dialogs.

accepting-values [Macro]

Arguments: (&optional stream &key command-table own-window exit-boxes
align-prompts initially-select-query-identifier
modify-initial-query resynchronize-every-pass
(check-overlapping t) label x-position y-position width
height scroll-bars :right-margin :bottom-margin)
&body body

■ Builds a dialog for user interaction based on calls to accept within its body. The user can select

the values and change them, or use defaults if they are supplied. The dialog will also contain buttons

typically labeled "OK" and "Cancel" (see :the exit-boxes argument below). If "OK" is selected

then accepting-values returns whatever values the body returns. If "Cancel" is selected,

accepting-valueswill invoke the abort restart. Callers of accepting-valuesmay want

to use restart-case or with-simple-restart in order to locally establish an abort
restart.
262 CLIM 2.2 User Guide

If make-application-frame is called within the body, to create, for example, a frame that

is popped up for some purpose, the :calling-frame argument to make-application-
frame should be specified with the value *application-frame*. If this is not done, the

popped-up frame may not be sensitive to the mouse or keyboard input. Note that this means you can-

not use an existing frame since it cannot have been created with the correct value for the :calling-
frame argument.

stream

The stream accepting-values will use to build up the dialog. When stream is t, that

means *query-io*.

body

The body of the macro, which contains calls to accept that will be intercepted by accepting-
values and used to build up the dialog.

own-window

When own-window is true the accepting-values dialog will appear in its own popped-up

window. In this case the initial value of stream is a window with which the dialog is associated.

This is similar to the associated-window argument to menu-choose. Within the body,

the value of stream will be the popped-up window.

The value of own-window can be t or nil. If it is t, the right-margin and bottom-
margin arguments can be used to control the amount of extra space to the right of and below the

dialog (useful if the user's responses to the dialog take up more space than the initially displayed

defaults).

right-margin

bottom-margin

These arguments only have effect when own-window is true. Their values control the amount of

extra space to the right of and below the dialog (useful if the user's responses to the dialog take up

more space than the initially displayed defaults). The allowed values for right-margin are the

same as for x-spacing in formatting-table; the allowed values for bottom-margin
are the same as for y-spacing in formatting-table. formatting-table is defined

in section 11.3.

exit-boxes

Allows you to describe what the exit boxes should look like. :exit and :abort choices are sup-

ported. The default behavior is as though you specified the following:

'((:exit "OK") (:abort "Cancel"))

You can specify your own strings in a similar list.

initially-select-query-identifier

Specifies that a particular field in the dialog should be pre-selected when the user interaction

begins. The field to be selected is tagged by the query-identifier option to accept; use

this tag as the value for the initially-select-query-identifier keyword, as shown

in the following example:

(defun avv ()

 (let (a b c)

 (clim:accepting-values

 (*query-io* :initially-select-query-identifier ’the-tag)

 (setq a (clim:accept ’pathname :prompt "A pathname"))

 (terpri *query-io*)
CLIM 2.2 User Guide 263

 (setq b (clim:accept ’integer :prompt "A number"

 :query-identifier ’the-tag))

 (terpri *query-io*)

 (setq c (clim:accept ’string :prompt "A string")))

 (values a b c)))

When the initial display is output, the input editor cursor appears after the prompt of the tagged

field, just as if the user had selected that field by clicking on it (unless a gadget is displayed). The

default value, if any, for the selected field is not displayed.

resynchronize-every-pass

Boolean option specifying whether earlier queries depend on later values; the default is nil.

When resynchronize-every-pass is t, the contents of the dialog are redisplayed an

additional time after each user interaction. This has the effect of ensuring that, when the value of

some field of a dialog depends on the value of another field, all of the displayed fields will be up

to date.

You can use this option to dynamically alter the dialog. The following is a simple example. It ini-

tially displays an integer field that disappears if a value other than 1 is entered; in its place a two-

field display appears.

(defun alter-multiple-accept ()

 (let ((flag 1))

 (clim:accepting-values (*query-io* :resynchronize-every-pass t)

 (setq flag (clim:accept ’integer :default flag :prompt "Number"))

 (when (= flag 1)

 (terpri *query-io*)

 (clim:accept ’string :prompt "String")

 (terpri *query-io*)

 (clim:accept ’pathname :prompt "Pathname")))))

As the example shows, to use this option effectively, the controlling variable(s) must be initialized

outside the lexical scope of the accepting-values macro.

label

Allows you to supply a label in :own-window t dialogs. This is just like the :label option to

menu-choose.

x-position

y-position

Allow you to specify where an :own-window t dialog will come up. By default, the dialog will

come up near the center of the frame launching the accepting-values dialog. These are just

like the options of the same name to menu-choose-from-drawer.

scroll-bars

Can be :both, :vertical, :horizontal, or nil. Default is nil (meaning no scroll bars).

Only has effect when :own-window is true.

command-table

Specifies the command table for the accepting-values frame.

align-prompts

The values can be nil (the default), :left, meaning left align, :right, meaning right align,

and t, which is the same as :right. Suppose you have two accepts within the body, with
264 CLIM 2.2 User Guide

prompts "Age?" and "Last Name?". The prompts and space for input will align as follows,

depending on the value of this argument:

unspecified or nil:

Age? [space for input]

Last Name? [space for input]

:left:

Age? [space for input]

Last Name? [space for input]

:right or t:

 Age? [space for input]

Last Name? [space for input]

■ Note: you must supply either a unique prompt or a query-identifier for each accept form within

an accepting-values form; otherwise, there will be no way that the accept-values can identify

which accept form is being run.

■ In Allegro CLIM, accepting-valueswill use Motif gadgets for the fields in the dialog, since

the default view for the Motif frame managers is +gadget-dialog-view+. You can inhibit this

behavior by either explicitly specifying :view in the calls to accept, or by binding the value of

frame-manager-dialog-view around the call to accepting-values. For more informa-

tion on views, see section 8.6.13 Using views with CLIM presentation types.

■ See the section 13.5 Examples of menus and dialogs in CLIM.

accept-values-command-button [Macro]

Arguments: ((&optional stream &key view documentation query-identifier
(cache-value t) (cache-test #'eql) resynchronize
(active-p t)) prompt &body body)

■ Displays prompt on stream and creates an area (the button) in which, when the pointer is

clicked, body is evaluated. This function is only used within the accepting-values form.

In Allegro CLIM using +gadget-dialog-view+ as the view, this will create a Motif push

button.

documentation

An object that will be used to produce pointer documentation for the command button. If the

object is a string, the string itself will be used as the documentation. Otherwise, it should be either

a function of one argument, the stream to which the documentation will be written. The default is

prompt.

query-identifier

This option is used with accepting-values.

cache-value

A value that remains constant if the appearance of the command button is to stay the same. You

rarely need to use this because changing prompt changes the default for query-identifier
causing a new accept-values-command-button to be created.

cache-test

A function of two arguments that is used for comparing cache values.
CLIM 2.2 User Guide 265

resynchronize

When this is t, the dialog is redisplayed on additional time whenever the command button is

clicked on. See the resynchronize-every-pass argument to accepting-values for

more information.

prompt

A string, which is used to label the button, or a form, which must output to stream. The output is

used as the label.

view

This argument controls the apperance of the button. It takes the same arguments as the push-but-

ton gadget (defined in section 16.3).

active-p

A boolean which controls whether the button is active. Specifying nil displays the button but it is

not sensitive.

■ See the section 13.5 Examples of menus and dialogs in CLIM.

13.4 Using an :accept-values pane in a CLIM application frame

:accept-values panes are used when you want one of the panes of your application to be in the form

of an accepting-values dialog.

There are several things to remember when using an :accept-values pane in your application

frame:

• For an :accept-values pane to work your frame's command table must inherit from the

accept-values-pane command table.

• The :display-function option for an :accept-values pane will typically be

something like

(clim:accept-values-pane-displayer :displayer my-acceptor-function)

where my-acceptor-function is a function that you write. It contains calls to accept just

as they would appear inside a accepting-values for a dialog. It takes two arguments, the

frame and a stream. my-acceptor-function doesn't need to call accepting-values
itself, since that is done automatically.

See the chapter 13 Menus and dialogs in CLIM, and see the function accept-values-
pane-displayer.

accept-values-pane [Command table]

■ When you use an accept-values pane as one of the panes in a define-application-
frame, you must inherit from this command table in order to get the commands that operate on the

dialog.

It is recommended that an application's command table inherit from user-command-table.

user-command-table inherits from global-command-table. If your application uses an

:accept-values pane, then its command table must inherit from the accept-values-pane
command table in order for it to work properly.
266 CLIM 2.2 User Guide

accept-values-pane-displayer [Function]

Arguments: frame pane &key displayer resynchronize-every-pass

■ When you use an :accept-values pane, the display-function must use accept-values-
pane-displayer. See the section 13.4 Using an :accept-values pane in a CLIM application
frame.

displayer is a function that is the body of an accepting-values dialog. It takes two

arguments, the frame and a stream. The display-function must not call accepting-values itself,

since that is done by accept-values-pane-displayer.

The resynchronize-every-pass argument is the same as it is for accepting-
values.

13.5 Examples of menus and dialogs in CLIM

13.5.1 Example of using clim:accepting-values

This example sets up a dialog in the CLIM window stream that displays the current Month, Date, Hour and

Minute (as obtained by a call to get-universal-time) and allows the user to modify those values. The

user can select values to change by using the mouse to select values, typing in new values, and pressing

Newline or Return. When done, the user selects ‘End’ to accept the new values, or ‘Abort’, to terminate

without changes.

(defun reset-clock (stream)
 (multiple-value-bind (second minute hour day month)
 (decode-universal-time (get-universal-time))
 (declare (ignore second))
 (format stream "Enter the time~%")
 (restart-case
 (progn
 (clim:accepting-values (stream)
 (setq month (clim:accept ’integer :stream stream
 :default month :prompt "Month"))
 (terpri stream)
 (setq day (clim:accept ’integer :stream stream
 :default day :prompt "Day"))
 (terpri stream)
 (setq hour (clim:accept ’integer :stream stream
 :default hour :prompt "Hour"))
 (terpri stream)
 (setq minute (clim:accept ’integer :stream stream
 :default minute :prompt "Minute")))
 ;; This could be code to reset the time, but instead
 ;; we’re just printing it out
 (format t "~%New values: Month: ~D, Day: ~D, Time: ~D:~2,’0D."
 month day hour minute))
 (abort () (format t "~&Time not set")))))

Note that in CLIM, calls to accept do not automatically insert newlines. If you want to put each query

on its own line of the dialog, use terpri between the calls to accept.
CLIM 2.2 User Guide 267

13.5.2 Example of using clim:accept-values-command-button

Here is the reset-clock example with the addition of a command button that will set the number of seconds

to zero.

(defun reset-clock (stream)
 (multiple-value-bind (second minute hour day month)
 (decode-universal-time (get-universal-time))
 (format stream "Enter the time~%")
 (restart-case
 (progn
 (clim:accepting-values (stream)
 (setq month (clim:accept ’integer :stream stream
 :default month :prompt "Month"))
 (terpri stream)
 (setq day (clim:accept ’integer :stream stream
 :default day :prompt "Day"))
 (terpri stream)
 (setq hour (clim:accept ’integer :stream stream
 :default hour :prompt "Hour"))
 (terpri stream)
 (setq minute (clim:accept ’integer :stream stream
 :default minute :prompt "Minute"))
 (terpri stream)
 (clim:accept-values-command-button (stream) "Zero seconds"
 (setq second 0)))
 ;; This could be code to reset the time, but
 ;; instead we’re just printing it out
 (format t "~%New values: Month: ~D, Day: ~D, Time: ~D:~2,’0D:~2,’0D."
 month day hour minute second))
 (abort () (format t "~&Time not set")))))

13.5.3 Using :resynchronize-every-pass in clim:accepting-values

It often happens that the programmer wants to present a dialog where the individual fields of the dialog

depend on one another. For example, consider a spreadsheet with seven columns representing the days of a

week. Each column is headed with that day's date. If the user inputs the date of any single day, the other

dates can be computed from that single piece of input.

If you build CLIM dialogs using accepting-values you can achieve this effect by using the

:resynchronize-every-pass argument to accepting-values in conjunction with the

:default argument to accept. There are three points to remember:

• The entire body of the accepting-values runs each time the user modifies any field. The

body can be made to run an extra time by specifying :resynchronize-every-pass t.

Code in the body may be used to enforce constraints among values.

• If the :default argument to accept is used, then every time that call to accept is run, it

will pick up the new value of the default.

• Inside accepting-values, accept returns a third value, a boolean that indicates whether

the returned value is the result of new input by the user, or is just the previously supplied default.
268 CLIM 2.2 User Guide

In this example we show a dialog that accepts two real numbers, delimiting an interval on the real line.

The two values are labelled "Min" and "Max", but we wish to allow the user to supply a "Min" that is greater

than the "Max", and automatically exchange the values rather than signalling an error.

(defun accepting-interval (&key (min -1.0) (max 1.0) (stream *query-io*))
 (clim:accepting-values (stream :resynchronize-every-pass t)
 (fresh-line stream)
 (setq min (clim:accept ’real :default min :prompt "Min"
 :stream stream))
 (fresh-line stream)
 (setq max (clim:accept ’real :default max :prompt "Max"
 :stream stream))
 (when (< max min) (rotatef min max)))
 (values min max))

(You may want to try this example after dropping the :resynchronize-every-pass and see the

behavior. Without :resynchronize-every-pass, the constraint is still enforced, but the display lags

behind the values and doesn't reflect the updated values immediately.)

13.5.4 Use of the third value from clim:accept in clim:accepting-values

As a second example, consider a dialog that accepts four real numbers that delimit a rectangular region in

the plane, only we wish to enforce a constraint that the region be a square. We allow the user to input any

of "Xmin", "Xmax", "Ymin" or "Ymax", but enforce the constraint that

Xmax - Xmin = Ymax - Ymin

This constraint is a little harder to enforce. Presumably a user would be very disturbed if a value that he

or she had just input was changed. So for this example we follow a policy that says if the user changed an

X value, then only change Y values to enforce the constraint, and vice versa. When changing values we pre-

serve the center of the interval. (This policy is somewhat arbitrary and only for the purposes of this exam-

ple.) We use the third returned value from accept to control the constraint enforcement.

(defun accepting-square (&key (xmin -1.0) (xmax 1.0) (ymin -1.0) (ymax 1.0)
 (stream *query-io*))
 (let (xmin-changed xmax-changed ymin-changed ymax-changed ptype)
 (clim:accepting-values (stream :resynchronize-every-pass t)
 (fresh-line stream)
 (multiple-value-setq (xmin ptype xmin-changed)
 (clim:accept ’real :default xmin :prompt "Xmin"
 :stream stream))
 (fresh-line stream)
 (multiple-value-setq (xmax ptype xmax-changed)
 (clim:accept ’real :default xmax :prompt "Xmax"
 :stream stream))
 (fresh-line stream)
 (multiple-value-setq (ymin ptype ymin-changed)
 (clim:accept ’real :default ymin :prompt "Ymin"
 :stream stream))
 (fresh-line stream)
 (multiple-value-setq (ymax ptype ymax-changed)
 (clim:accept ’real :default ymax :prompt "Ymax"
CLIM 2.2 User Guide 269

 :stream stream))
 (cond ((or xmin-changed xmax-changed)
 (let ((y-center (/ (+ ymax ymin) 2.0))
 (x-half-width (/ (- xmax xmin) 2.0)))
 (setq ymin (- y-center x-half-width)
 ymax (+ y-center x-half-width)))
 (setq xmin-changed nil xmax-changed nil))
 ((or ymin-changed ymax-changed)
 (let ((x-center (/ (+ xmax xmin) 2.0))
 (y-half-width (/ (- ymax ymin) 2.0)))
 (setq xmin (- x-center y-half-width)
 xmax (+ x-center y-half-width)))
 (setq ymin-changed nil ymax-changed nil)))))
 (values xmin xmax ymin ymax))

13.5.5 A simple spreadsheet that uses dialogs

Here is an example of how you might use accepting-values to implement a spreadsheet. You should

not really do this, because the performance won't be good and the interface is probably not what you want.

The important thing this illustrates is that accepting-values can be used with CLIM's high level for-

matted output facilities.

(defun silly-spreadsheet (stream &optional (nrows 3) (ncols 4))
 (let ((result (make-array (list nrows ncols))))
 (clim:accepting-values (stream)
 (clim:formatting-table (stream :y-spacing
 (floor (stream-line-height stream) 2))
 (dotimes (row nrows)
 (clim:formatting-row (stream)
 (dotimes (cell ncols)
 (clim:formatting-cell (stream :min-width " ")
 (let* ((id (+ (* ncols row) cell))
 (default (or (aref result row cell) id)))
 (setf (aref result row cell)
 (clim:accept ’integer
 :prompt nil :default default
 :query-identifier id
 :stream stream)))))))))
 result))

13.5.6 Examples of using clim:menu-choose

These examples show how to use menu-choose.

The simplest use of menu-choose. If each item is not a list, the entire item will be printed and the entire

item is the value to be returned too.

(clim:menu-choose '("One" "Two" "Seventeen"))

If you want to return a value that is different from what was printed, the simplest method is as below.

Each item is a list; the first element is what will be printed, the remainder of the list is treated as a plist --
270 CLIM 2.2 User Guide

the :value property will be returned. (Note nil is returned if you click on "Seventeen" since it has no

:value.)

(clim:menu-choose ’(("One" :value 1 :documentation "the loneliest number")
 ("Two" :value 2 :documentation "for tea")
 ("Seventeen" :documentation "what can be said about this?")))

The list of items you pass to menu-choose might also serve some other purpose in your application.

In that case, it might not be appropriate to put the printed appearance in the first element. You can supply a

:printer function which will be called on the item to produce its printed appearance.

(clim:menu-choose '(1 2 17)
 :printer #'(lambda (item stream) (format stream "~R" item)))

The items in the menu needn't be printed textually:

(clim:menu-choose ’(circle square triangle)
 :printer #’(lambda (item stream)
 (case item
 (circle (clim:draw-circle* stream 0 0 10))
 (square (clim:draw-polygon*
 stream ’(-8 -8 -8 8 8 8 8 -8)))
 (triangle (clim:draw-polygon*
 stream ’(10 8 0 -10 -10 8))))))

The :items option of the list form of menu item can be used to describe a set of hierarchical menus.

(clim:menu-choose
 ’(("Class: Osteichthyes"
 :documentation "Bony fishes"
 :style (nil :italic nil))
 ("Class: Chondrichthyes"
 :documentation "Cartilagenous fishes"
 :style (nil :italic nil)
 :items (("Order: Squaliformes" :documentation "Sharks")
 ("Order: Rajiformes" :documentation "Rays")))
 ("Class: Mammalia"
 :documentation "Mammals"
 :style (nil :italic nil)
 :items (("Order Rodentia"
 :items ("Family Sciuridae"
 "Family Muridae"
 "Family Cricetidae"
 ("..." :value nil)))
 ("Order Carnivora"
 :items ("Family: Felidae"
 "Family: Canidae"
 "Family: Ursidae"
 ("..." :value nil)))
 ("..." :value nil)))
 ("..." :value nil)))
CLIM 2.2 User Guide 271

13.5.7 Examples of using clim:menu-choose-from-drawer

This example displays in the window *page-window* the choices "One" through "Ten" in bold type

face. When the user selects one, the string is returned along with the gesture that selected it.

(clim:menu-choose-from-drawer
 page-window ’string
 #’(lambda (stream type)
 (clim:with-text-face (:stream bold)
 (dotimes (count 10)
 (clim:present
 (string-capitalize
 (format nil "~R" (1+ count)))
 type :stream stream)
 (terpri stream)))))
272 CLIM 2.2 User Guide

Chapter 14 Incremental redisplay in
CLIM

14.1 Concepts of incremental redisplay in CLIM

Some kinds of applications can benefit greatly by the ability to redisplay information on a window only

when that information has changed. This feature, called incremental redisplay, can greatly ease the process

of writing applications only parts of whose display is changing, and can improve the speed at which your

application updates information on the screen. Incremental redisplay is very useful for programs that display

a window of changing information, where some portions of the window are static, and some are continually

changing. A dynamic process monitor (aka, ‘Peek’) is an example; this window displays the status of pro-

cesses and other changing system information. Incremental redisplay allows you to redisplay pieces of the

existing output differently, under your control.

CLIM's output recording mechanism provides the foundation for incremental redisplay. As an application

programmer, you need to understand the concepts of output recording before learning how to use the tech-

niques of incremental redisplay.

A way in which incremental redisplay is accomplished is to first create an updating output record by call-

ing updating-output. The updating-output informs CLIM that some piece of output may

change in the future, and identifies under what circumstance a branches of the output history is known not

to have changed.

redisplay takes an output record and redisplays it. This essentially tells the CLIM to create that output

record over from scratch. However, CLIM compares the results with the existing output and tries to do min-

imal redisplay.

The recommended way to use incremental redisplay is with the :incremental-redisplay pane

option. It can either be a boolean which defaults to nil or a list consisting of a boolean followed by key-

word option pairs. The only option currently supported is :check-overlappingwhich takes a boolean

value and defaults to t. Specifying this option as nil improves performance but should only be used where

the output produced by the display function does not contain overlapping output.

The :incremental-redisplay option is always used in conjunction with a pane display function

(specified with :display-function). It wraps a top level updating-output (see below) around

the call to the display function and makes redisplay-frame-pane call redisplay on the updating

output record rather than invoking the display function. The display function is invoked the first time it is

called (in order to create the initial updating output record) or if :force-p t is specified in the call to

redisplay-frame-pane.
CLIM 2.2 User Guide 273

14.2 Using clim:updating-output

The main technique of incremental redisplay is to use updating-output to inform CLIM what output

has changed, and use redisplay to recompute and redisplay that output.

The outermost call to updating-output identifies a program fragment that produces incrementally

redisplayable output. A nested call to updating-output (that is, a call to updating-output that

occurs during the execution of the body of the outermost updating-output and specifies the same

stream) identifies an individually redisplayable piece of output, the program fragment that produces that

output, and the circumstances under which that output needs to be redrawn.

The outermost call to updating-output executes its body, producing the initial version of the output,

and returns a updating-output-record that captures the body in a closure. Each nested call to

updating-output caches the values of its :unique-id and :cache-value arguments and the

portion of the output produced by its body.

redisplay takes a updating-output-record and executes the captured body of updating-
output over again. When a nested call to updating-output is executed during redisplay,

updating-output decides whether the cached output can be reused or the output needs to be redrawn.

This is controlled by the :cache-value argument to updating-output. If its value matches its pre-

vious value, the body would produce output identical to the previous output and thus is unnecessary. In this

case the cached output is reused and updating-output does not execute its body. If the cache value

does not match, the output needs to be redrawn, so updating-output executes its body and the new

output drawn on the stream replaces the previous output. The :cache-value argument is only meaning-

ful for nested calls to updating-output.

If the :incremental-redisplay pane option is used, CLIM supplies the outermost call to

updating-output, saves the updating-output-record, and calls redisplay. The function

specified by the :display-function pane option performs only the nested calls to updating-
output.

If you use incremental redisplay without using the :incremental-redisplay pane option, you

must perform the outermost call to updating-output, save the updating-output-record, and

call redisplay yourself.

In order to compare the cache to the output record, two pieces of information are necessary:

• An association between the output being done by the program and a particular cache. This is

supplied in the :unique-id option to updating-output.

• A means of determining whether this particular cache is valid. This is the :cache-value
option to updating-output.

Normally, you would supply both options. The unique-id would be some data structure associated with

the corresponding part of output. The cache value would be something in that data structure that changes

whenever the output changes.

It is valid to give the :unique-id options without specifying a :cache-value. This is done to iden-

tify a superior in the hierarchy. By this means, the inferiors essentially get a more complex unique id when

they are matched for output. (In other words, it is like using a telephone area code.) The cache without a

cache value is never valid. Its inferiors always have to be checked.

It is also valid to give the :cache-value and not the :unique-id. In this case, unique ids are just

assigned sequentially. So, if output associated with the same thing is done in the same order each time, it

isn't necessary to invent new unique ids for each piece. This is especially true in the case of inferiors of a

cache with a unique id and no cache value of its own. In this case, the superior marks the particular data
274 CLIM 2.2 User Guide

structure, whose components can change individually, and the inferiors are always in the same order and

properly identified by their superior and the order in which they are output.

A unique id need not be unique across the entire redisplay, only among the inferiors of a given output

cache; that is, among all possible (current and additional) uses you make of updating-output that are

dynamically (not lexically) within another.

To make your incremental redisplay maximally efficient, you should attempt to give as many caches with

:cache-value as possible. For instance, if you have a deeply nested tree, it is better to be able to know

when whole branches have not changed than to have to recurse to every single leaf and check it. So, if you

are maintaining a modification tick in the leaves, it is better to also maintain one in their superiors and prop-

agate the modification up when things change. While the simpler approach works, it requires CLIM to do

more work than is necessary.

14.3 CLIM Operators for Incremental Redisplay

The following functions are used to create an output record that should be incrementally redisplayed, and

then to redisplay that record.

updating-output [Macro]

Arguments: (stream &rest args
&key (record-type 'clim:standard-updating-output-record)
unique-id (id-test 'eql) cache-value (cache-test 'eql)
parent-cache output-record fixed-position all-new
&allow-other-keys) &body body

■ Informs the incremental redisplay module of the characteristics of the output done by body to

stream.

For related information, see the section 14.2 Using clim:updating-output.

unique-id

Provides a means to uniquely identify this output. If unique-id is not supplied, CLIM will gen-

erate one that is guaranteed to be unique at the current redisplay level.

id-test

A function of two arguments that is used for comparing unique ids. The default is eql.

cache-value

A value that remains constant if and only if the output produced by body does not need to be

recomputed. If the cache value is not supplied, CLIM will not use a cache for this piece of output.

cache-test

A function of two arguments that is used for comparing cache values. The default is eql.

fixed-position

Declares that the location of this output is fixed relative to its parent. When CLIM redisplays an

output record which specified :fixed-position t, if the contents have not changed, the posi-

tion of the output record will not change. If the contents have changed, CLIM assumes that the

code will take care to preserve its position.

all-new

Indicates that all of the output done by body is new, and will never match output previously

recorded.
CLIM 2.2 User Guide 275

record-type

The type of output record that should be constructed. This defaults to standard-updating-
output-record.

redisplay [Function]

Arguments: record stream &key (check-overlapping t)

■ Causes the output of record to be recomputed by calling redisplay-output-record on

record. CLIM redisplays the changes incrementally, that is, only redisplays those parts of the

record that changed. record must be an output record created by a previous call to updating-
output, and may be any part of the output history of stream.

The check-overlapping keyword insures that redisplay checks for overlapping

records. It defaults to t. If you set it to nil it speeds up redisplay, at the risk of failing to draw some

records due to overlap. If you are sure that no sibling records overlap, you can use this keyword to

optimize redisplay.

See the section 14.4 Example of incremental redisplay in CLIM.

redisplay-output-record [Generic function]

Arguments: record stream &optional check-overlapping x y parent-x
parent-y

■ Causes the output of record to be recomputed. CLIM redisplays the changes incrementally, that

is, only redisplays those parts of the record that changed. record must be an output record created

by a previous call to updating-output, and may be any part of the output history of stream.

The optional arguments can be used to specify where on the stream the output record should be

redisplayed. x and y represent where the cursor should be, relative to the parent output record of

record, before the record is redisplayed. The default values for x and y are the starting position of

the output record.

parent-x and parent-y can be supplied to say: do the output as if the superior started at

positions parent-x and parent-y (which are in absolute coordinates). The default values for

parent-x and parent-y are the absolute coordinate of the output record's parent.

The check-overlapping argument insures that redisplay checks for overlapping

records. It defaults to t. If you make it nil it speeds up redisplay, at the risk of failing to draw some

records due to overlap. If you are sure that no sibling records overlap, you can use this argument to

optimize redisplay.

You can specialize this generic function for your own classes of output records.

14.4 Example of incremental redisplay in CLIM

The following example illustrates the standard use of incremental redisplay, using the :incremental-
redisplay pane option:

(define-application-frame test
 ()
 ((list :accessor test-list :initform (list 1 2 3 4 5)))
 (:panes
 (display :application
 :display-function ’test-display
 :incremental-redisplay t))
 (:layouts
276 CLIM 2.2 User Guide

 (default
 display)))

(defmethod test-display ((frame test) stream)
 (let ((list (test-list frame)))
 (do* ((elements list (cdr elements))
 (count 0 (1+ count))
 (element (first elements) (first elements)))
 ((null elements))
 (clim:updating-output (stream :unique-id count
 :cache-value element)
 (format stream "Element ~D" element)
 (terpri stream)))))

(define-test-command (com-change :menu t) ()
 (with-application-frame (frame)
 (setf (nth 2 (test-list frame)) 17)))

The initial display looks like:

Element 1

Element 2

Element 3

Element 4

Element 5

After the change command is executed, redisplay-frame-pane is called on the display pane and

incremental redisplay causes the display to be updated to:

Element 1

Element 2

Element 17

Element 4

Element 5

Incremental redisplay can also be used on a CLIM stream pane without a pane display function and with-

out specifying :incremental-redisplay t. Note that in this case it is the programmers responsibility

to provide a top level updating-output and to explicitly call redisplay on that output record to

force incremental redisplay.

(defun test (stream)
 (let* ((list (list 1 2 3 4 5))
 (record
 (clim:updating-output (stream)
 (do* ((elements list (cdr elements))
 (count 0 (1+ count))
 (element (first elements) (first elements)))
 ((null elements))
 (clim:updating-output (stream :unique-id count
 :cache-value element)
 (format stream "Element ~D" element)
 (terpri stream))))))
 (sleep 10)
CLIM 2.2 User Guide 277

 (setf (nth 2 list) 17)
 (clim:redisplay record stream)))

Here is an example of using incremental redisplay in conjunction with graph formatting.

(defun redisplay-graph (stream)
 (macrolet ((make-node (&key name children)
 ‘(list* ,name ,children))
 (node-name (node)
 ‘(car ,node))
 (node-children (node)
 ‘(cdr ,node)))
 (let* ((3a (make-node :name "3A"))
 (3b (make-node :name "3B"))
 (2a (make-node :name "2A"))
 (2b (make-node :name "2B"))
 (2c (make-node :name "2C"))
 (1a (make-node :name "1A" :children (list 2a 2b)))
 (1b (make-node :name "1B" :children (list 2b 2c)))
 (root (make-node :name "0" :children (list 1a 1b)))
 (graph
 (clim:updating-output (stream :unique-id root)
 (clim:format-graph-from-root
 root
 #’(lambda (node s)
 (clim:updating-output (s :cache-value node)
 (write-string (node-name node) s)))
 #’cdr ;really #’node-children
 :stream stream))))
 (sleep 2)
 (setf (node-children 2a) (list 3a 3b))
 (clim:redisplay graph stream)
 (sleep 2)
 (setf (node-children 2a) nil)
 (clim:redisplay graph stream))))

The following is a long example of a graphical CLOS class browser. It is meant to demonstrate, in some

detail, the interaction between incremental redisplay and the high-level formatted output facilities (in this

case, graph formatting). Note particularly the use of a tick that is used to drive when redisplay occurs for

the nodes of the graph. Changing an inferior node propagates tick up the graph so that superior nodes prop-

erly redisplay as well. This example is a good guide for writing any such application.

(in-package :clim-user)

;;; Class browser nodes

(defclass class-browser-node ()
 ((object :reader node-object :initarg :object)
 (inferiors :accessor node-inferiors :initform nil)
 (superiors :accessor node-superiors :initform nil)
 (tick :accessor node-tick :initform 0)))

(defun make-class-browser-node (object)
 (make-instance ’class-browser-node :object object))
278 CLIM 2.2 User Guide

(defmethod node-object-name ((node class-browser-node))
 (class-name (node-object node)))

(defmethod display-node ((node class-browser-node) stream)
 (updating-output (stream :unique-id node
 :cache-value (node-tick node))
 (let ((class (node-object node)))
 (with-output-as-presentation (stream node ’class-browser-node)
 (with-output-as-presentation (stream class ’class)
 (write (node-object-name node) :stream stream))))))

;; Propagate ticks up the graph to get proper redisplay.
(defmethod tick-node ((node class-browser-node))
 (labels ((tick (node)
 (incf (node-tick node))
 (dolist (superior (node-superiors node))
 (tick superior))))
 (declare (dynamic-extent #’tick))
 (tick node)))

(defun make-class-browser-root (object)
 (typecase object
 (class
 (make-class-browser-node object))
 (symbol
 (let ((class (find-class object nil)))
 (when class
 (make-class-browser-node class))))))

(defmethod node-generate-inferior-objects ((node class-browser-node))
 (class-direct-subclasses (node-object node)))

(defmethod node-any-inferior-objects-p ((node class-browser-node))
 (not (null (class-direct-subclasses (node-object node)))))

(defun node-eql (n1 n2)
 (eql (node-object n1) (node-object n2)))

;;; The CLASS presentation type

(define-presentation-type class ()
 :history t)

(define-presentation-method accept ((type class) stream (view textual-view)
&key default)
 (let* ((class-name (accept ’symbol :stream stream :view view
 :default (and default (class-name default))
 :prompt nil))
 (class (find-class class-name nil)))
 (unless class
 (input-not-of-required-type class-name type))
 class))
CLIM 2.2 User Guide 279

(define-presentation-method present (class (type class) stream (view textual-
view) &key)
 (prin1 (class-name class) stream))

;;; The class browser itself

(define-application-frame class-browser ()
 ((tree-depth :initform 1)
 (root-nodes :initform nil)
 (all-nodes :initform nil))
 (:command-definer t)
 (:command-table (class-browser :inherit-from (accept-values-pane)))
 (:panes
 (graph :application
 :display-function ’display-graph-pane
 :display-after-commands t
 :incremental-redisplay t
 :scroll-bars :both
 :end-of-page-action :allow
 :end-of-line-action :allow)
 (interactor :interactor :height ’(5 :line)))
 (:layouts
 (default
 (vertically ()
 (4/5 graph)
 (1/5 interactor)))))

(defmethod display-graph-pane ((browser class-browser) stream)
 (let ((root-nodes (slot-value browser ’root-nodes)))
 (when root-nodes
 (updating-output (stream :unique-id root-nodes)
 (format-graph-from-roots root-nodes #’display-node #’node-inferiors
 :graph-type :dag
 :stream stream
 :orientation :horizontal
 :merge-duplicates t)))))

(defmethod generate-class-graph ((browser class-browser) nodes
 &optional (depth (slot-value browser ’tree-depth)))
 (when nodes
 (let ((generated nil))
 (labels
 ((collect-inferiors (node parent-node depth)
 (when (and (plusp depth)
 (not (eql node parent-node)))
 (let ((inferior-objects
 (node-generate-inferior-objects node)))
 (when inferior-objects
 (setq generated t) ;we generated something
 (dolist (object inferior-objects)
 (let ((inferior-node
 (find-node-for-object browser object)))
 (unless (member node (node-superiors inferior-node))
280 CLIM 2.2 User Guide

 (setf (node-superiors inferior-node)
 (nconc (node-superiors inferior-node) (list node))))
 (unless (member inferior-node (node-inferiors node)
 :test #’node-eql)
 (setf (node-inferiors node)
 (nconc (node-inferiors node) (list inferior-node))))
 ;; Recursively collect inferiors for these nodes
 (collect-inferiors inferior-node node (1- depth)))))))))
 (declare (dynamic-extent #’collect-inferiors))
 (dolist (node nodes)
 (collect-inferiors node nil depth)))
 generated)))

;; Find or intern a new node.
(defmethod find-node-for-object ((browser class-browser) object &key (test
#’eql))
 (with-slots (all-nodes) browser
 (dolist (node all-nodes)
 (when (funcall test object (node-object node))
 (return-from find-node-for-object node)))
 (let ((node (make-class-browser-node object)))
 (setq all-nodes (nconc all-nodes (list node)))
 node)))
(define-class-browser-command (com-show-graph :name t :menu t)
 ((objects ’(sequence class)
 :prompt "some class names"
 :default nil))
 (with-slots (root-nodes all-nodes) *application-frame*
 (setq root-nodes (mapcar #’make-class-browser-root objects))
 ;; ALL-NODES and ROOT-NODES must not be EQ lists...
 (setq all-nodes (copy-list root-nodes))
 (window-clear (get-frame-pane *application-frame* ’graph))
 (generate-class-graph *application-frame* root-nodes)
 (redisplay-frame-pane *application-frame* ’graph :force-p t)))

(define-gesture-name :show-graph :pointer-button (:left :shift))

(define-presentation-to-command-translator show-graph
 (class-browser-node com-show-graph class-browser
 :gesture :show-graph)
 (object)
 (list (list (node-object object))))

(define-class-browser-command com-show-node-inferiors
 ((node ’class-browser-node :prompt "node to show inferiors for"))
 (when (generate-class-graph *application-frame* (list node) 1)
 (tick-node node)))

(define-presentation-to-command-translator show-node-inferiors
 (class-browser-node com-show-node-inferiors class-browser
 :gesture :select
 :tester ((object)
 (node-any-inferior-objects-p object)))
 (object)
CLIM 2.2 User Guide 281

 (list object))

(define-class-browser-command com-hide-node-inferiors
 ((node ’class-browser-node :prompt "node to hide inferiors of"))
 (when (node-inferiors node)
 (setf (node-inferiors node) nil)
 (tick-node node)))

(define-presentation-to-command-translator hide-node-inferiors
 (class-browser-node com-hide-node-inferiors class-browser
 :gesture :describe
 :tester ((object)
 (not (null (node-inferiors object)))))
 (object)
 (list object))

(define-class-browser-command com-delete-node
 ((node ’class-browser-node :prompt "node to delete"))
 (when (node-superiors node)
 (dolist (superior (node-superiors node))
 (setf (node-inferiors superior) (delete node (node-inferiors superior))))
 (tick-node node)))

(define-presentation-to-command-translator delete-node
 (class-browser-node com-delete-node class-browser
 :gesture :delete
 :tester ((object) (and (null (node-inferiors object))
 (not (null (node-superiors object))))))
 (object)
 (list object))

(define-class-browser-command (com-redisplay-graph :name t :menu "Redisplay")
()
 (redisplay-frame-pane *application-frame* ’graph :force-p t))

(define-class-browser-command (com-quit-browser :name "Quit" :menu "Quit") ()
 (frame-exit *application-frame*))

(defun do-class-browser (&key (port (find-port)) (force nil))
 (find-application-frame ’class-browser
 :frame-manager (find-frame-manager :port port)
 :own-process nil :create (if force :force t)))
282 CLIM 2.2 User Guide

Chapter 15 Manipulating the pointer
in CLIM

15.1 Manipulating the pointer in CLIM

A pointer is an input device that enables pointing at an area of the screen (for example, a mouse or a a tablet).

CLIM offers a set of operators that enable you to manipulate the pointer.

The following functions allow you to directly manipulate the pointer. You should be careful when you

use any functions to set the pointer position. It is widely considered best to avoid creating user interfaces

where the pointer jumps around unexpectedly.

port-pointer [Generic function]

Arguments: port

■ Returns the pointer object corresponding to the primary pointing device for the port port.

port-modifier-state [Generic function]

Arguments: port

■ Returns the state of the modifier keys for the port port. This is a bit-encoded integer that can be

checked against the values of +shift-key+, +control-key+, +meta-key+, +super-
key+, and +hyper-key+. When the bit is on, the corresponding key is being held down on the key-

board.

pointer-button-state [Generic function]

Arguments: pointer

■ Returns the current state of the buttons of pointer as an integer. This will be a mask consisting

of the logior of +pointer-left-button+, +pointer-middle-button+, and

+pointer-right-button+.

pointer-sheet [Generic function]

Arguments: pointer

■ Returns the sheet over which the pointer is currently located.

pointer-position [Generic function]

Arguments: pointer

■ This function returns the position (two coordinate values) of the pointer in the coordinate sys-

tem of the sheet that the pointer is currently over.

You can use pointer-set-position to set the pointer's position.
CLIM 2.2 User Guide 283

pointer-set-position [Generic function]

Arguments: pointer x y

■ This function changes the position of the pointer to be (x,y). x and y are in the coordinate

system of the sheet that the pointer is currently over.

pointer-native-position [Generic function]

Arguments: pointer

■ This function returns the position (two coordinate values) of the pointer in the coordinate sys-

tem of the port's graft (that is, its root window).

You can use pointer-set-position to set the pointer's native position.

pointer-set-native-position [Generic function]

Arguments: pointer x y

■ This function changes the position of the pointer to be (x,y). x and y are in the coordinate

system of the port's graft (that is, its root window).

pointer-cursor [Generic function]

Arguments: pointer

■ Returns the type of the cursor presently being used by the pointer. This will be one of

You can temporarily change the pointer's cursor by calling setf on pointer-cursor. How-

ever, the window manager may change the pointer cursor to something else very quickly, so for this

reason it is generally preferable to modify sheet-pointer-cursor of the affected sheets

instead.

stream-pointer-position [Generic function]

Arguments: stream &key pointer

■ This function returns the position (two coordinate values) of the pointer in the stream's coor-

dinate system. If pointer is not supplied, it defaults to port-pointer of the stream's port.

This function is usually used in preference to pointer-positionwhen you have your hands

on a CLIM stream.

You can use stream-set-pointer-position to set the pointer's position.

:busy :lower-right :scroll-right

:button :move :scroll-up

:default :position :upper-left

:horizontal-scroll :prompt :upper-right

:horizontal-thumb :scroll-down :vertical-scroll

:lower-left :scroll-left :vertical-thumb
284 CLIM 2.2 User Guide

stream-set-pointer-position [Generic function]

Arguments: stream x y &key pointer

■ This function sets the position (two coordinate values) of the pointer in the stream's coordi-

nate system. If the port cannot set the pointer's position, this leaves the pointer where it was. If

pointer is not supplied, it defaults to port-pointer of the stream's port.

sheet-pointer-cursor [Generic function]

Arguments: sheet

■ Returns the type of the cursor that will be used by the pointer when it is over the sheet sheet.

This will be one of

■ You can change the pointer cursor for a sheet by calling setf on sheet-pointer-cursor.

15.2 High Level Operators for Tracking the Pointer in CLIM

Sometimes it is useful to be able to track the pointer directly without having to resort to manage events at

the level of handle-event. The following operators provide convenient interfaces for doing this.

tracking-pointer [Macro]

Arguments: (&optional stream &key pointer multiple-window transformp
(context-type t) highlight) &body clauses

■ tracking-pointer a general means for running code while following the position of a point-

ing device on the stream stream, and monitoring for other input events. User-supplied code may be

run upon occurrence of any of the following types of events:

• Motion of the pointer

• Motion of the pointer over a presentation

• Clicking or releasing a pointer button

• Clicking or releasing a pointer button on a presentation

• Keyboard event (typing a character)

IMPLEMENTATION LIMITATION: tracking-pointer will not work across multiple

windows with a mouse button down.

■ stream defaults to *standard-output*.

■ The keyword arguments to tracking-pointer are:

:busy :lower-right :scroll-right

:button :move :scroll-up

:default :position :upper-left

:horizontal-scroll :prompt :upper-right

:horizontal-thumb :scroll-down :vertical-scroll

:lower-left :scroll-left :vertical-thumb
CLIM 2.2 User Guide 285

pointer

Specifies a pointer to track. It defaults to (port-pointer (port stream)). Unless there

is more than one pointing device available, it is unlikely that this option will be useful.

multiple-window

A boolean that specifies that the pointer is to be tracked across multiple windows. The default is

nil.

transformp

A boolean that specifies that coordinates supplied to the :pointer-motion clause are to be

transformed by the current user transformation. If nil (the default), the coordinates are supplied

as ordinary stream coordinates.

context-type

A presentation type specifier that indicates what type of presentations that will be visible to the

tracking code. It defaults to t, meaning that all presentations are visible.

highlight

A boolean that specifies whether or not CLIM should highlight presentations. It defaults to t if

there are any presentation clauses in the body (:presentation, :presentation-but-
ton-press, or :presentation-button-release), meaning that presentations should

be highlighted. Otherwise it defaults to nil.

■ The body of tracking-pointer consists of clauses. Each clause in clauses is of the

form (clause-keyword arglist &body clause-body) and defines a local function to be

run upon occurrence of each type of event. The possible clause-keywords, their arglists,

and their uses are given next.

IMPLEMENTATION LIMITATION: The arglists differ from those in the CLIM 2 specification

in that the arguments are not keyword arguments (as called for in the spec). The difference first

appeared in code shared among CLIM 2 implementors and not noticed before it was too late to

change.

:presentation (presentation window x y)

Defines a clause to run whenever the user moves the pointer over a presentation of the desired

type. (See the keyword argument :context-type above for a description of how to specify

the desired type.) In the clause, presentation is bound to the presentation, window to the

window in which the presentation was found, and x and y to the coordinates of the pointer. (See

the keyword argument :transformp above for a description of the coordinate system in which

x and y is expressed.)

:pointer-motion (window x y)

Defines a clause to run whenever the user moves the pointer. In the clause, window is bound to

the window in which the motion occurred, and x and y to the coordinates of the pointer. (See the

keyword argument :transformp above for a description of the coordinate system in which x
and y is expressed.) When both :presentation and :pointer-motion clauses are pro-

vided, the two clauses are mutually exclusive in that only one of them will be run when the pointer

moves. The :presentation clause will run if the pointer is over an applicable presentation,

otherwise the :pointer-motion clause will run.

:presentation-button-press (presentation event x y)

Defines a clause to run whenever the user presses a pointer button over a presentation of the

desired type. (See the keyword argument :context-type above for a description of how to

specify the desired type.) In the clause, presentation is bound to the presentation, and

event to the event object. (The window and the coordinates of the pointer are part of event.)
286 CLIM 2.2 User Guide

x and y are the transformed x and y positions of the pointer. These will be different from

pointer-event-x and pointer-event-y if the window's user transformation is a non-

identity transformation and transformp is non-nil.

:pointer-button-press (event x y)

Defines a clause to run whenever the user presses a pointer button. In the clause, event is bound

to the event object. (The window and the coordinates of the pointer are part of event.) When

both :presentation-button-press and :pointer-button-press clauses are pro-

vided, the two clauses are mutually exclusive in that only one of them will be run when the button

is pressed. The :presentation-button-press clause will run if applicable, otherwise the

:pointer-button-press clause will run.

x and y are the transformed x and y positions of the pointer. These will be different from

pointer-event-x and pointer-event-y if the window's user transformation is a non-

identity transformation and transformp is non-nil.

:presentation-button-release (presentation event x y)

Defines a clause to run whenever the user releases a pointer button over a presentation. In the

clause, presentation is bound to the presentation, and event to the event object. (The win-

dow and the coordinates of the pointer are part of event.)

x and y are the transformed x and y positions of the pointer. These will be different from

pointer-event-x and pointer-event-y if the window's user transformation is a non-

identity transformation and transformp is non-nil.

:pointer-button-release (event x y)

Defines a clause to run whenever the user releases a pointer button. In the clause, event is bound

to the event object. (The window and the coordinates of the pointer are part of event.)

x and y are the transformed x and y positions of the pointer. These will be different from

pointer-event-x and pointer-event-y if the window's user transformation is a non-

identity transformation and transformp is non-nil.

When both :presentation-button-release and :pointer-button-release
clauses are provided, the two clauses are mutually exclusive in that only one of them will be run

when the button is released. The :presentation-button-release clause will run if

applicable, otherwise the :pointer-button-release clause will run.

:keyboard (character)

Defines a clause to run whenever the user types a character. In the clause, character is bound

to the character typed.

drag-output-record [Function]

Arguments: stream output-record &key (repaint t) multiple-window (erase
#'clim:erase-output-record) feedback finish-on-release

■ Enters an interaction mode in which user moves the pointer, and output-record follows the

pointer by being dragged on stream.

repaint

Allows you to specify the appearance of windows as the pointer is dragged. If repaint is t (the

default), the displayed contents of the window is not disturbed as output-record is dragged

over them (that is, those regions of the window are repainted as the record is dragged).

erase

Allows you to identify a function to erase the output record (the default is erase-output-
record). erase is a function of two arguments, the output record to erase, and the stream.
CLIM 2.2 User Guide 287

feedback

Allows you to identify a feedback function. feedback a is a function of seven arguments: the

output record, the stream, the initial x and y position of the pointer, the current x and y position

of the pointer, and a drawing argument (either :erase, or :draw). Note that if feedback is

supplied, erase is ignored.

You should supply feedback if you want more complex feedback than is supplied by default,

for instance, if you want to draw a rubber band line as the user moves the mouse. The default for

feedback is nil.

multiple-window

is as for tracking-pointer.

finish-on-release

When this is nil, the body is exited when the user clicks a mouse button. When this is t (the

default), the body is exited when the user releases the mouse button currently being held down.

dragging-output [Macro]

Arguments: (&optional stream &key (repaint t) multiple-window finish-
on-release) &body body

■ Evaluates body to produce the output, and then invokes drag-output-record to drag that

output on stream. stream defaults to *standard-output*.

■ repaint, multiple-window, and finish-on-release are as for drag-output-
record.

pointer-place-rubber-band-line* [Function]

Arguments: &key stream pointer multiple-window start-x start-y finish-
on-release

■ This function can be used to input the end points of a line on the stream stream. stream
defaults to *standard-input*. pointer and multiple-window are as for tracking-
pointer. finish-on-release is as for dragging-output.

If start-x and start-y are provided, the start point of the line is at (start-x,start-y).

Otherwise, the start point of the line is selected by pressing a button on the pointer.

pointer-place-rubber-band-line* returns four values, the start x and y positions,

and the end x and y positions.

pointer-input-rectangle* [Function]

Arguments: &key stream pointer multiple-window left top right bottom
finish-on-release

■ This function can be used to input the end corners of a rectangle on the stream stream. stream
defaults to *standard-input*. pointer and multiple-window are as for tracking-
pointer. finish-on-release is as for dragging-output.

If left and top are provided, the upper left corner of the rectangle is at (left,top). If right
and bottom are provided, the lower right corner of the rectangle is at (left,top). Otherwise, the

upper left corner of the rectangle is selected by pressing a button on the pointer.

pointer-input-rectangle* returns four values, the left, top, right, and bottom corners

of the rectangles.
288 CLIM 2.2 User Guide

pointer-input-rectangle [Function]

Arguments: &key stream pointer multiple-window rectangle
finish-on-release

■ This function is equivalent to pointer-input-rectangle*, except that the initial corners

of the rectangle are gotten from rectangle, and the return result is a bounding rectangle rather than

four values.

15.2.1 Examples of Higher Level Pointer-Tracking Facilities

The following function could be used to input a line segment. Pressing a pointer button places the start of

the line, and releasing it places the end of the line.

(defun pointer-input-line* (&optional (stream *standard-input*))
 (let (start-x start-y end-x end-y)
 (flet ((finish (event finish &optional press)
 (let ((x (pointer-event-x event))
 (y (pointer-event-y event))
 (window (event-sheet event)))
 (when (eq window stream)
 (cond (start-x
 (clim:with-output-recording-options (window :draw t :record nil)
 (clim:draw-line* window start-x start-y end-x end-y
 :ink clim:+flipping-ink+))
 (clim:draw-line* window start-x start-y end-x end-y)
 (when finish
 (return-from pointer-input-line*
 (values start-x start-y end-x end-y))))
 (press (setq start-x x start-y y)))))))
 (declare (dynamic-extent #’finish))
 (tracking-pointer (stream)
 (:pointer-motion (window x y)
 (when (and start-x (eq window stream))
 (clim:with-output-recording-options (window :draw t :record nil)
 (when end-x
 (clim:draw-line* window start-x start-y end-x end-y
 :ink +flipping-ink+))
 (setq end-x x end-y y)
 (clim:draw-line* window start-x start-y end-x end-y
 :ink +flipping-ink+))))
 (:pointer-button-press (event)
 (finish event nil t))
 (:pointer-button-release (event)
 (finish event t))))))

The following function can be used to create a circle at the current pointer position, and reposition it by

dragging it.

(defun place-circle (radius &optional (stream *standard-input*))
 (multiple-value-bind (x y) (clim:stream-pointer-position stream)
 (clim:dragging-output (stream)
 (clim:draw-circle* stream x y radius :filled nil))))
CLIM 2.2 User Guide 289

The following is used in CLIM's CAD demo program to move a component. component is the class

and presentation type of a component in the demo. First the component is erased from its old position, then

drag-output-record is used to drag the component around. Finally, the component is moved to its

new location in the design-area pane.

(define-cad-demo-command (com-move-component :menu "Move")
 ((component ’component :gesture :select))
 (let ((stream (clim:get-frame-pane clim:*application-frame* ’design-area)))
 (draw-self component stream :ink +background-ink+)
 (multiple-value-bind (x y delta-x delta-y)
 (let ((*draw-connections* nil))
 (clim:drag-output-record
 stream component
 :repaint t
 :erase #’(lambda (c s)
 (draw-body c s :ink clim:+background-ink+))
 :finish-on-release t))
 (move component (- x delta-x) (+ *component-size* (- y delta-y))))
 (draw-self component stream)))
290 CLIM 2.2 User Guide

Chapter 16 Using gadgets in CLIM

16.1 Using gadgets in CLIM

CLIM supports the use of gadgets as panes within an application. The following sections describe the basic

gadget protocol, and the various gadgets supplied by CLIM.

16.2 Basic gadget protocol in CLIM

Gadgets are panes that implement such common toolkit components as push buttons or scroll bars. Each

gadget class has a set of associated generic functions that serve the same role that callbacks serve in tradi-

tional toolkits. For example, a push button has an ‘activate’ callback function that is invoked when its button

is pressed; a scroll bar has a value changed callback that is invoked after its indicator has been moved.

The gadget definitions specified by CLIM are abstract in that the gadget definition does not specify the

exact user interface of the gadget, but only specifies the semantics that the gadget should provide. For

instance, it is not defined whether the user clicks on a push button with the mouse or moves the mouse over

the button and then presses some key on the keyboard to invoke the activate callback. The user can control

some high-level aspects of the gadgets (approximate size, orientation, and so on), but each toolkit imple-

mentation will specify the exact look and feel of their gadgets. Typically, the look and feel will be derived

directly from the underlying toolkit. In Allegro CLIM, the underlying toolkit is Motif. (Of course, you can

also use the portable gadgets by instantiating the appropriate concrete pane class.)

Every gadget has an id and a client, which are specified when the gadget is created. The client is notified

via the callback mechanism when any important user interaction takes place. Typically, a gadget's client will

be an application frame or a composite pane. Each callback generic function is invoked on the gadget, its

client, the gadget id (described below), and other arguments that vary depending on the callback.

For example, the activate-callback takes three arguments, a gadget, the client, and the gadget-id.

Assuming the you have defined an application frame called button-test that has a CLIM stream pane

in the slot output-pane, you could write the following method:

(defmethod clim:activate-callback
 ((button clim:push-button) (client button-test) gadget-id)
 (with-slots (output-pane) client
 (format output-pane "The button ~S was pressed, client ~S, id ~S."
 button client gadget-id)))

One problem with this example is that it differentiates on the class of the gadget, not on the particular

gadget instance. That is, the same method will run for every push button that has the button-test frame

as its client.

One way to distinguish between the various gadgets is via the gadget id, which is also specified when the

gadget is created. The value of the gadget id is passed as the third argument to each callback generic func-
CLIM 2.2 User Guide 291

tion. In this case, if you have two buttons, you might install start and stop as the respective gadget ids

and then use eql specializers on the gadget ids. You could then refine the above as:

(defmethod clim:activate-callback
((button clim:push-button) (client button-test) (gadget-id (eql ’start)))

 (start-test client))

(defmethod clim:activate-callback
((button clim:push-button) (client button-test) (gadget-id (eql ’stop)))

 (stop-test client))

;; Create the start and stop push buttons
(clim:make-pane ’clim:push-button
 :label "Start"
 :client frame :id ’start)

(clim:make-pane ’clim:push-button
 :label "Stop"
 :client frame :id ’stop)

Still another way to distinguish between gadgets is to explicitly specify what function should be called

when the callback is invoked. This is specified when the gadget is created by supplying an appropriate ini-

targ. You could then rewrite the above example as follows:

;; No callback methods needed, just create the push buttons
(clim:make-pane ’clim:push-button
 :label "Start"
 :client frame :id ’start
 :activate-callback
 #’(lambda (gadget)
 (start-test (gadget-client gadget))))

(clim:make-pane ’clim:push-button
 :label "Stop"
 :client frame :id ’stop
 :activate-callback
 #’(lambda (gadget)
 (stop-test (gadget-client gadget))))

The following classes and functions constitute the basic protocol for all of CLIM's gadgets. See the sec-

tion 16.3 Abstract Gadgets in CLIM.

16.2.1 Basic gadgets

This section describes the basic gadget classes on which CLIM builds it gadgets. You can use these classes

to build gadgets of your own.

gadget [Class]

■ The protocol class that corresponds to a gadget.

All subclasses of gadget handle the four initargs :id, :client, :armed-callback, and

:disarmed-callback, which are used to specify, respectively, the gadget id, client, armed call-

back, and disarmed callback of the gadget. These are described below.
292 CLIM 2.2 User Guide

The armed callback and disarmed callback are either nil or a function that takes a single argu-

ment, the gadget that was armed (or disarmed).

basic-gadget [Class]

■ The implementation class on which many CLIM gadgets are built. If you create your own kind of

gadget, it will probably inherit from this class.

gadgetp [Function]

Arguments: object

■ Returns t if object is a gadget, otherwise returns nil.

gadget-id [Generic function]

Arguments: gadget

■ Returns the gadget id of the gadget gadget. The id is typically a simple Lisp object that uniquely

identifies the gadget.

You can use setf to change the id of the gadget.

gadget-client [Generic function]

Arguments: gadget

■ Returns the client of the gadget gadget. The client is usually an application frame, but it could

be another gadget (for example, in the case of a push button that is contained in a radio box).

You can use setf to change the gadget's client.

armed-callback [Generic function]

Arguments: gadget client id

■ This callback is invoked when the gadget gadget is armed. The exact definition of arming varies

from gadget to gadget, but typically a gadget becomes armed when the pointer is moved into its

region.

The default method for armed-callback (on basic-gadget) calls the function specified

by the :armed-callback initarg if there is one, otherwise it does a call-next-method.

disarmed-callback [Generic function]

Arguments: gadget client id

■ This callback is invoked when the gadget gadget is disarmed. The exact definition of disarming

varies from gadget to gadget, but typically a gadget becomes disarmed when the pointer is moved out

of its region.

The default method for disarmed-callback (on basic-gadget) calls the function spec-

ified by the :disarmed-callback initarg if there is one, otherwise it does a call-next-
method.

activate-gadget [Generic function]

Arguments: gadget

■ Causes the host gadget to become active, that is, available for input. The function note-
gadget-activated is called once the gadget has been made active.
CLIM 2.2 User Guide 293

deactivate-gadget [Generic function]

Arguments: gadget

■ Causes the host gadget to become inactive, that is, unavailable for input. In some environments

this may cause the gadget to become grayed over; in others, no visual effect may be detected. The

function note-gadget-deactivated is called once the gadget has been made active.

gadget-active-p [Generic function]

Arguments: gadget

■ Returns t if the gadget is active, that is, available for input. Otherwise, it returns nil.

note-gadget-activated [Generic function]

Arguments: client gadget

■ This function is invoked after a gadget is made active.

note-gadget-deactivated [Generic function]

Arguments: client gadget

■ This function is invoked after a gadget is made inactive.

16.2.2 Value gadgets

value-gadget [Class]

■ The class used by gadgets that have a value; a subclass of basic-gadget.

All subclasses of value-gadget handle the two initargs :value and :value-changed-
callback, which are used to specify, respectively, the initial value and the value changed callback

of the gadget. The value changed callback is either nil or a function of two arguments, the gadget

and the new value.

gadget-value [Generic function]

Arguments: gadget

■ Returns the value of the gadget value-gadget. The interpretation of the value varies from

gadget to gadget. For example, a scroll bar's value might be a number between 0 and 1, while a toggle

button's value is either t or nil. (The documentation of each individual gadget below specifies how

to interpret the value.)

You can use setf on gadget-value to change the value of a gadget. Normally when you set

the value of a gadget, the value change callback will not be invoked. If you want the value change

callback to be called, specify :invoke-callback t, for example:

(setf (clim:gadget-value ... :invoke-callback t) ...)

value-changed-callback [Generic function]

Arguments: gadget client id value

■ This callback is invoked when the value of a gadget is changed, either by the user or programmat-

ically.

The default method (on value-gadget) calls the function specified by the :value-
changed-callback initarg with two arguments, the gadget and the new value, if such a function

is specified. Otherwise, it does a call-next-method (just like armed-callback).
294 CLIM 2.2 User Guide

drag-callback [Generic function]

Arguments: gadget client id value

■ Some value gadgets, such as sliders and scroll bars, have a drag callback. This callback is invoked

when the value of the slider or scroll bar is changed while the indicator is being dragged. This is

implemented by calling the function specified by the :drag-callback initarg with two argu-

ments, the slider (or scroll bar) and the new value, if such a function is specified. Otherwise, it does

a call-next-method (just like armed-callback).

16.2.3 Action gadgets

action-gadget [Class]

■ The class used by gadgets that perform some kind of action, such as a push button; a subclass of

basic-gadget.

All subclasses of action-gadget handle the :activate-callback initarg, which is

used to specify the activate callback of the gadget. The activate callback is nil or a function of one

argument, the gadget.

activate-callback [Generic function]

Arguments: gadget client id

■ This callback is invoked when the gadget is activated.

The default method (on action-gadget) calls the function specified by the :activate-
callback initarg with one argument, the gadget, if such a function is specified. Otherwise, it does

a call-next-method (just like armed-callback).

16.2.4 Other gadget classes

oriented-gadget-mixin [Class]

■ The class that is mixed in to a gadget that has an orientation associated with it, for example, a

slider.

All subclasses of oriented-gadget-mixin handle the :orientation initarg, which is

used to specify the orientation of the gadget.

gadget-orientation [Generic function]

Arguments: oriented-gadget

■ Returns the orientation of the gadget oriented-gadget. Typically, this will be a keyword

such as :horizontal or :vertical.

row-column-gadget-mixin [Class]

■ This class is mixed in to a gadget that has a row or column associated with it, for example radio-
box and check-box, both of which inherit from this class. All subclasses handle the :rows and

:columns initargs, only one of which should be specified. These are accessed with gadget-
rows and gadget-columns.
CLIM 2.2 User Guide 295

gadget-columns [Generic function]

gadget-rows [Generic function]

Arguments: row-column-gadget

■ Returns the number of columns (gadget-columns) or rows (gadget-rows) in row-
column-gadget.

labelled-gadget-mixin [Class]

■ The class that is mixed in to a gadget that has a label, for example, a push button.

All subclasses of labelled-gadget-mixin handle the initargs :label, :alignment,

and :text-style, which are used to specify the label, the label's alignment within the gadget, and

the label's text style. The label can be a string or a pixmap or a pattern.

gadget-label [Generic function]

Arguments: labelled-gadget

■ Returns the label of the gadget labelled-gadget. The label must be a string or a pixmap.

You can use setf to change the label of a gadget, but this may result in invoking the layout pro-

tocol on the gadget and its ancestor sheets (that is, the entire application frame may be laid out again).

range-gadget-mixin [Class]

■ The class that is mixed in to a gadget that has a range, for example, a slider.

All subclasses of range-gadget-mixin handle the two initargs :min-value and :max-
value, which are used to specify the minimum and maximum value of the gadget.

gadget-min-value [Generic function]

Arguments: range-gadget

■ Returns the minimum value of the gadget range-gadget. It will be a real number.

■ You can use setf to change the minimum value of the gadget.

gadget-max-value [Generic function]

Arguments: range-gadget

■ Returns the maximum value of the gadget range-gadget. It will be a real number.

■ You can use setf to change the maximum value of the gadget.

16.3 Abstract gadgets in CLIM

Many gadgets in CLIM, such as push buttons and sliders, are abstract gadgets. This is because the classes,

such as push-button and slider, do not themselves implement gadgets, but rather arrange for the

frame manager layer of CLIM to create concrete gadgets that correspond to the abstract gadgets. The call-

back interface to all of the various implementations of the gadget is defined by the abstract class. In the

:panes clause of define-application-frame, the abbreviation for a gadget is the name of the

abstract gadget class.

At pane creation time (that is, during make-pane), the frame manager resolves the abstract class into

a specific implementation class; the implementation classes specify the detailed look and feel of the gadget.

Each frame manager will keep a mapping from abstract gadgets to an implementation class; if the frame

manager does not implement its own gadget for the abstract gadget classes in the following sections, it
296 CLIM 2.2 User Guide

should use the portable class provided by CLIM. Since every implementation class is a subclass of the

abstract class, they all share the same programmer interface.

The following classes and functions comprise CLIM's abstract gadgets. See the section 16.2 Basic gadget
protocol in CLIM.

make-pane [Function]

Arguments: pane-class &rest pane-options

■ Selects a class that implements the behavior of the abstract pane pane-class and constructs a

pane of that class. make-pane must be used within the lexical scope of a call to with-look-
and-feel-realization. That is automatically established within the :pane, :panes, and

:layouts options of a define-application-frame and by certain macros like with-
output-as-gadget.

push-button [Class]

■ The push-button gadget class provides press-to-activate switch behavior. It is a subclass of

action-gadget and labelled-gadget-mixin. In addition to the usual pane initargs (:fore-

ground, :background, space requirement options, and so forth), the following initargs are supported:

:show-as-default

when t, the push button will be marked as a default button following the look and feel con-

ventions of the frame-manager.

■ Note that in order to associate a pattern with a push-button you should use the :label option

inherited from labelled-gadget-mixin.

■ The :pattern initarg is no longer supported.

IMPLEMENTATION LIMITATION: The following initarg, :external-label, is not

implemented in the current release.

:external-label

If supplied, this is a string that will be used as a label that is drawn outside of the push button,

instead of inside of the button.

■ When the button is actually activated (by releasing the pointer button over it), activate-
callback will be invoked. Finally, disarmed-callback will be invoked after activate-
callback, or when the pointer is moved outside of the button. (Note that Motif does not support

armed/disarmed callbacks on push-buttons.)

A push button might be created as follows:

(clim:make-pane ’clim:push-button
 :label "Button"
 :activate-callback ’push-button-callback)

(defun push-button-callback (button)
 (format t "~&Button ~A pushed" (clim:gadget-label button)))

push-button-view [Class]

■ The view class associated with push buttons. The view class options include all the options avail-

able for the push-button gadget-class. It is useful for specifying a :view argument to accept-
values-command-button.

+push-button-view+ [Constant]

■ An instance of the class push-button-view.
CLIM 2.2 User Guide 297

push-button-show-as-default [Generic function]

Arguments: push-button

■ Returns the show as default slot of the push button gadget

toggle-button [Class]

■ The toggle-button gadget class provides on/off switch behavior. It is a subclass of value-
gadget and labelled-gadget-mixin. This gadget typically appears as a box that is option-

ally highlighted with a check-mark. If the check-mark is present, the gadget's value is t, otherwise

it is nil.

In addition to the usual pane initargs (:foreground, :background, :text-style, space

requirement options, and so forth), the following initargs are supported:

:indicator-type

This is used to initialize the indicator type property for the gadget. This will be either :one-of
or :some-of. The indicator type controls the appearance of the toggle button. For example,

many toolkits present a one-of-many choice differently from a some-of-many choice.

■ When the toggle button is actually activated (by releasing the pointer button over it), value-
changed-callback will be invoked. Finally, disarmed-callback will be invoked after

value-changed-callback, or when the pointer is moved outside of the toggle button. (Note

that Motif does not support armed/disarmed callbacks on toggle-buttons.)

Calling gadget-value on a toggle button will return t if the button is selected, otherwise it

will return nil. The value of the toggle button can be changed by calling setf on gadget-
value.

A toggle button might be created as follows:

(clim:make-pane ’clim:toggle-button
 :label "Toggle" :width 80
 :value-changed-callback ’toggle-button-callback)

(defun toggle-button-callback (button value)
 (format t "~&Button ~A toggled to ~S" (clim:gadget-label button) value))

radio-box [Class]

■ A radio box is a special kind of gadget that constrains one or more toggle buttons. At any one

time, only one of the buttons managed by the radio box may be ‘on’. The contents of a radio box are

its buttons, and as such a radio box is responsible for laying out the buttons that it contains.

It is a subclass of value-gadget and oriented-gadget-mixin.

In addition to the usual pane initargs (:foreground, :background, space requirement

options, and so forth), the following initargs are supported:

:current-selection

This is used to specify which button, if any, should be initially selected.

:choices

This is used to specify all of the buttons that serve as choices.

■ As the current selection changes, the previously selected button and the newly selected button

both have their value-changed-callback handlers invoked.

Calling gadget-value on a radio box will return the currently selected toggle button. The

value of the radio box can be changed by calling setf on gadget-value.
298 CLIM 2.2 User Guide

A radio box might be created as follows, although it is generally more convenient to use with-radio-
box:

(let* ((choices
 (list (clim:make-pane ’clim:toggle-button :label "One" :width 80)
 (clim:make-pane ’clim:toggle-button :label "Two" :width 80)
 (clim:make-pane ’clim:toggle-button :label "Three" :width 80)))
 (current (second choices)))
 (clim:make-pane ’clim:radio-box
 :choices choices
 :selection current
 :value-changed-callback ’radio-value-changed-callback))

(defun radio-value-changed-callback (radio-box value)
 (declare (ignore radio-box))
 (format t "~&Radio box toggled to ~S" value))

check-box [Class]

■ A check box is similar to a radio box: it is a special kind of gadget that constrains one or more

toggle buttons. At any one time, zero or more of the buttons managed by the check box may be ‘on’.

The contents of a check box are its buttons, and as such a check box is responsible for laying out the

buttons that it contains.

It is a subclass of value-gadget and oriented-gadget-mixin.

In addition to the usual pane initargs (:foreground, :background, space requirement

options, and so forth), the following initargs are supported:

:selection

This is used to specify which button, if any, should be initially selected.

:choices

This is used to specify all of the buttons that serve as choices.

■ As the user changes the selections, the newly selected (or deselected) button will have its value-
changed-callback handler invoked.

Calling gadget-value on a check box will return a sequence of the currently selected toggle

buttons. The value of the check box can be changed by calling setf on gadget-value.

A check box might be created as follows, although it is generally more convenient to use with-radio-
box:

(let* ((choices
 (list (clim:make-pane ’clim:toggle-button :label "One" :width 80)
 (clim:make-pane ’clim:toggle-button :label "Two" :width 80)
 (clim:make-pane ’clim:toggle-button :label "Three" :width 80)))
 (current (second choices)))
 (clim:make-pane ’clim:check-box
 :choices choices
 :selection (list current)
 :value-changed-callback ’radio-value-changed-callback))

(defun radio-value-changed-callback (radio-box value)
 (declare (ignore radio-box))
 (format t "~&Radio box toggled to ~S" value))
CLIM 2.2 User Guide 299

with-radio-box [Macro]

Arguments: (&rest options &key (type ':one-of) &allow-other-keys)
&body body

■ Creates a radio box or a check box whose buttons are created by the forms in body. The macro

radio-box-current-selection (or check-box-current-selection) can be

wrapped around one of forms in body in order to indicate that that button is the current selection. If

:type is :one-of, this macro creates a radio box. If :type is :some-of, it creates a check box.

For example, the following creates a radio box with three buttons in it, the second of which is initially

selected.

(clim:with-radio-box ()
 (clim:make-pane ’clim:toggle-button :label "Mono")
 (clim:radio-box-current-selection
 (clim:make-pane ’clim:toggle-button :label "Stereo"))
 (clim:make-pane ’clim:toggle-button :label "Quadraphonic"))

The following simpler form can also be used when you do not need to control the appearance of each

button closely:

(clim:with-radio-box ()
 "Mono" "Stereo" "Quadraphonic")

list-pane [Class]

■ The list-pane gadget class corresponds to a list pane, that is, a pane whose semantics are sim-

ilar to a radio box or check box, but whose visual appearance is a list of buttons. It is a subclass of

value-gadget.

In addition to the usual pane initargs (:foreground, :background, space requirement

options, and so forth), the following initargs are supported:

:mode

Either :nonexclusive or :exclusive. When it is :exclusive, the list pane acts like a

radio box, that is, only a single item can be selected. Otherwise, the list pane acts like a check box,

in that zero or more items can be selected. The default is :exclusive.

:items

A list of items.

:visible-items

The number of items that should be visible at one time (the rest can be seen by scrolling). The

value should be a positive integer. The default is toolkit-specific.

:name-key

A function of one argument that generate the name of an item from the item. The default is

princ-to-string.

:value-key

A function of one argument that generate the value of an item from the item. The default is

identity.

:test

A function of two arguments that compares two items. The default is eql.
300 CLIM 2.2 User Guide

:scroll-bars

Possible values are nil, :horizontal, :vertical, and :both, causing scroll bars in the

indicated direction(s) or no scroll bars when nil.

■ Calling gadget-value on a list pane will return the single selected item when the mode is

:exclusive, or a sequence of selected items when the mode is :nonexclusive.

The value-changed-callback is invoked when the select item (or items) is changed.

Here are some examples of list panes:

(clim:make-pane ’clim:list-pane
 :value "Symbolics"
 :test ’string=
 :value-changed-callback ’list-pane-changed-callback
 :items ’("Franz" "Lucid" "Harlequin" "Symbolics"))

(clim:make-pane ’clim:list-pane
 :value ’("Lisp" "C++")
 :mode :nonexclusive
 :value-changed-callback ’list-pane-changed-callback
 :items ’("Lisp" "Fortran" "C" "C++" "Cobol" "Ada"))

(defun list-pane-changed-callback (tf value)
 (format t "~&List pane ~A changed to ~S" tf value))

option-pane [Class]

■ The option-pane gadget class corresponds to an option pane, that is, a pane whose semantics

are identical to a list pane with radio-box semantics, but whose visual appearance is a single push

button which, when pressed, pops up a menu of selections. It is a subclass of value-gadget.

In addition to the usual pane initargs (:foreground, :background, space requirement

options, and so forth), the following initargs are supported:

:items

A list of items.

:name-key

A function of one argument that generate the name of an item from the item. The default is

princ-to-string.

:value-key

A function of one argument that generate the value of an item from the item. The default is

identity.

:test

A function of two arguments that compares two items. The default is eql.

■ Calling gadget-value on an option pane will return the selected item.

The value-changed-callback is invoked when the selected item is changed.

Here are some examples of option panes:

(clim:make-pane ’clim:option-pane
 :label "Select a vendor"
 :value "Franz"
 :test ’string=
 :value-changed-callback ’option-pane-changed-callback
CLIM 2.2 User Guide 301

 :items ’("Franz" "Lucid" "Harlequin" "Symbolics"))

(clim:make-pane ’clim:option-pane
 :label "Select some languages"
 :value ’("Lisp" "C++")
 :value-changed-callback ’option-pane-changed-callback
 :items ’("Lisp" "Fortran" "C" "C++" "Cobol" "Ada"))

(defun option-pane-changed-callback (tf value)
 (format t "~&Option menu ~A changed to ~S" tf value))

scroll-bar [Class]

■ The scroll-bar gadget class corresponds to a scroll bar. It is a subclass of value-gadget,

oriented-gadget-mixin, and range-gadget-mixin. The usual pane initargs

(:foreground, :background, space requirement options, and so forth) may also be specified.

The following two initargs are also supported:

:size

an integer giving the size of the scroll-bar slug in pixels

:drag-callback

see the documentation for drag-callback.

slider [Class]

■ The slider gadget class corresponds to a slider. It is a subclass of value-gadget,

oriented-gadget-mixin, range-gadget-mixin, and labelled-gadget-mixin.

In addition to the usual pane initargs (:foreground, :background, :orientation,

space requirement options, and so forth), the following initargs are supported:

:drag-callback

Specifies the drag callback for the slider.

:show-value-p

Whether the slider should show its current value.

:decimal-places

An integer that specifies the number of decimal places that should be shown if the current value

is being shown.

IMPLEMENTATION LIMITATION: The remaining 5 initargs are called for in the CLIM 2

specification but not currently implemented:

:min-label

A string to use to label the minimum end of the slider.

:max-label

A string to use to label the maximum end of the slider.

:range-label-text-style

The text style to use for the min and max labels.

:number-of-tick-marks

The number of tick marks to draw on the slider.

:number-of-quanta

Either nil or an integer. If an integer, specifies the number of quanta in the slider. In this case the

slider is not continuous, and can only assume a value that falls on one of the quanta.
302 CLIM 2.2 User Guide

■ The drag-callback callback is invoked when the value of the slider is changed while the indi-

cator is being dragged. This is implemented by calling the function specified by the :drag-call-
back initarg with two arguments, the slider and the new value.

The value-changed-callback is invoked only after the indicator is released after drag-

ging it.

Calling gadget-value on a slider will return a real number within the specified range of the

slider.

Here are some examples of sliders (the unimplemented initargs are commented out):

(clim:make-pane ’clim:slider
 :label "A slider"
 :value-changed-callback ’slider-changed-callback
 :drag-callback ’slider-dragged-callback)

(clim:make-pane ’clim:slider
 :label "A slider with tick marks and range labels"
 ;:number-of-tick-marks 20
 ;:min-label "0" :max-label "20"
 :value-changed-callback ’slider-changed-callback
 :drag-callback ’slider-dragged-callback)

(clim:make-pane ’clim:slider
 :label "A vertical slider with visible value"
 :orientation :vertical
 :show-value-p t)

(clim:make-pane ’clim:slider
 :label "A very hairy quantized slider"
 :orientation :vertical
 ;:number-of-tick-marks 20
 ;:number-of-quanta 20
 :show-value-p t
 :min-value 0 :max-value 20
 ;:min-label "Min" :max-label "Max"
 :value-changed-callback ’slider-changed-callback
 :drag-callback ’slider-dragged-callback)

(defun slider-changed-callback (slider value)
 (format t "~&Slider ~A changed to ~S" (clim:gadget-label slider) value))

(defun slider-dragged-callback (slider value)
 (format t "~&Slider ~A dragged to ~S" (clim:gadget-label slider) value))

menu-bar [Class]

■ The gadget class that implements a menu-bar. A menu-bar will use the toolkit menu-bar. This

is a subclass of oriented-gadget-mixin.

In addition to the usual pane initargs (:foreground, :background, space requirement

options, and so forth), the following initarg is supported:

:command-table

Defaults to nil but you should specify a command-table for this gadget to be useful.
CLIM 2.2 User Guide 303

text-field [Class]

■ The gadget class that implements a text field. This is a subclass of both value-gadget and

action-gadget.

The value of a text field is the text string.

In addition to the usual pane initargs (:foreground, :background, space requirement

options, and so forth), the following initargs are supported:

:editable-p

When nil, the text field cannot be modified. When t (the default), the text field can be modified.

:scroll-bars

Possible values are nil, :horizontal, :vertical, and :both, causing scroll bars in the

indicated direction(s) or no scroll bars when nil.

text-editor [Class]

■ The text-editor gadget class corresponds to a large field containing text, a subclass of

text-field.

The value of a text editor is the text string.

In addition to the usual pane initargs (:foreground, :background, space requirement

options, and so forth), the following initargs are supported:

:editable-p

When nil, the text field cannot be modified. When t (the default), the text field can be modified.

:ncolumns

An integer specifying the width of the text editor in characters.

:nlines

An integer specifying the height of the text editor in lines.

:word-wrap

A boolean that controls whether word-wrapping is enabled.

■ An example:

(clim:make-pane ’clim:text-editor
 :value "Isn’t Lisp the greatest?"
 :value-changed-callback ’text-field-changed
 :ncolumns 40 :nlines 5)

(defun text-field-changed (tf value)
 (format t "~&Text field ~A changed to ~S" tf value))

■ Note that Motif text-editor widgets can be made to have Emacs-like keybindings. This will occur

if the contents of the file misc/dot-Xdefaults (in the Allegro CL distribution) is included in your .Xde-
faults file.

The following function accesses selected text in a gadget.

gadget-current-selection [Function]

Arguments: text-editor-or-text-field

■ Returns the selected text if there is any in text-editor-or-text-field. Returns nil if

no text is selected.
304 CLIM 2.2 User Guide

with-output-as-gadget [Macro]

Arguments: (stream &rest options) &body body

■ Invokes body to create a gadget, and then creates a gadget output record that contains the gadget

and installs it into the output history of the output recording stream stream. The returned value of

body must be the gadget.

The options in options are passed as initargs to the call to invoke-with-new-output-
record that ius used to create the new output record.

The stream argument is not evaluated. It must be a symbol that is bound to an output recording

stream. If stream is t, *standard-output* is used.

body may have zero or more declarations as its first forms.

■ For example, the following could be used to create an output record containing a radio box that

itself contains several toggle buttons (stream is a suitable stream and sequence is a list of items):

(with-output-as-gadget (stream)
 (let* ((radio-box
 (make-pane ’radio-box
 :client stream :id ’radio-box)))
 (dolist (item sequence)
 (make-pane ’toggle-button
 :label (princ-to-string (item-name item))
 :value (item-value item)
 :id item :parent radio-box))
 radio-box))

Here is a more complex (and somewhat contrived) example of a push button that calls back into

the presentation type system to execute a command:

(with-output-as-gadget (stream)
 (make-pane ’push-button
 :label "Click here to exit"
 :activate-callback
 #’(lambda (button)
 (declare (ignore button))
 (throw-highlighted-presentation
 (make-instance ’standard-presentation
 :object ‘(com-exit ,*application-frmae*)
 :type ’command)
 input-contaxt
 (make-instance ’pointer-button-press-event
 :sheet (sheet-parent button)
 :x 0 :y 0
 :modifiers 0
 :button +pointer-left-button+)))))

A note about unmirrored application panes
If you create unmirrored panes with with-output-as-gadget in a window, then graphics operations

on that window do not respect the bounding box of the children - that is they get drawn on. An unmirrored

pane is a clim-stream-pane such as an application-pane. Using scroll bars on the pane works around the

problem.
CLIM 2.2 User Guide 305

[This page intentionally left blank.]
306 CLIM 2.2 User Guide

Chapter 17 The CLIM input editor

17.1 Input editing and built-in keystroke commands in CLIM

CLIM provides a sophisticated facility for doing interactive input line editing. This section describes the

input editing commands available while you are doing command-line input to a CLIM application.

Table 1 provides a list of the keystrokes that are built into CLIM.

17.1.1 Activation and delimiter gestures

Activation gestures
Activation gestures terminate an input sentence, such as a command or anything else being read by

accept. When you enter an activation gesture, CLIM ceases reading input and executes the input that has

been entered.

The default activation gestures are Return and Newline.

The following deal with the set of activation gestures:

• The with-activation-gestures macro

• The *standard-activation-gestures* variable

• The *activation-gestures* variable

• The activation-gesture-p function

• The :activation-gestures option to accept

• The :additional-activation-gestures option to accept

Delimiter gestures
Delimiter gestures terminate an input word, such as a recursive call to accept. There are no global default

delimiter gestures; each presentation type that recursively calls accept specifies its own delimiter gestures

and sometimes offers a way to change them (see the information under the heading Command processor
characters below).

Delimiter gestures most commonly occur in command lines. When you type a delimiter gesture, CLIM's

command processor moves on to read the next field in the command line.

• The following deal with the set of delimiter gestures:

• The with-delimiter-gestures macro

• The *delimiter-gestures* variable

• The delimiter-gesture-p function

• The :delimiter-gestures option to accept

• The :additional-delimiter-gestures option to accept
CLIM 2.2 User Guide 307

• The :separator option to subset-completion

• The :separator option to subset

• The :separator option to subset-sequence

• The :separator option to subset-alist

Abort gestures
When you type an abort gesture while an application is reading input, CLIM aborts the application by

invoking the abort restart. By default, the abort restart is caught by default-frame-top-level,

which will abort what the application frame is doing and read another command.

The default abort gesture is Control-Z in Allegro. Meta-Control-Z is the default for asynchronous aborts.

The set of abort gesture is maintained in the lists which are the values of *abort-gestures* and

asynchronous-abort-gestures

Completion gestures
Several presentation types, such as member and pathname, support completion of partial inputs. When

an application is accepting input of one of these types, you can enter a completion gesture and possibilities

gesture. A completion gesture causes CLIM to complete the input that has been entered so far; if there is

more than possible completion, CLIM completes it as much as possible. A possibilities gesture causes

CLIM to display the possible completions of the input that has been entered so far.

The default completion gesture is Tab.

The default possibilities gesture is Control-? in Allegro. You can also click the right button of the pointer

over a blank area on the window in order to cause CLIM to display a menu of possibilities.

The following deal with the set of completion gestures:

• The *completion-gestures* variable

• The *possibilities-gestures* variable

• The *help-gestures* variable

Command processor gestures
When an application is reading the type command-or-form, a command dispatcher gesture introduces

a command rather than a form. The default command dispatcher is #\: (a colon). For example, in the

CLIM Lisp Listener, you must type a #\: before you enter a command name.

The default gesture for both terminating and completing command names is Space. This acts as a delim-

iter gesture while reading a command name.

The default character for terminating a command argument is Space. This is acts as a delimiter gesture

while reading an argument to a command.

17.1.2 Input editor commands

You can edit keyboard input to accept until you type an activation gesture to terminate the input sentence.

After an activation gesture is entered, if CLIM cannot parse the input, you must edit and re-activate it.

The input editor has a number of single-keystroke editing commands, described in the table below. Prefix

numeric arguments to input editor commands can be entered using digits and minus sign (-) with control

and meta (as in Emacs).
308 CLIM 2.2 User Guide

You can use the function add-input-editor-command to bind one or more keys to an input editor

command. Any character can be an input editor command, but by convention only non-graphic characters

should be used.

Table 17.2: Keybindings for the input editor commands

Command Keybindings

universal-argument nil; C-u is used by clear-input.

forward-character C-f

forward-word M-f
ESCAPE f

backward-character C-b

backward-word M-b
ESCAPE b

beginning-of-buffer M-<
ESCAPE <

end-of-buffer M->
ESCAPE >

beginning-of-line C-a

end-of-line C-e

next-line C-n

previous-line C-p

rubout DELETE or RUBOUT

delete-character C-d

rubout-word M-DELETE or M-RUBOUT
ESCAPE DELETE or ESCAPE RUBOUT

delete-word M-d
ESCAPE d

kill-line C-k

make-room C-o

transpose-characters C-t

show-arglist C-x C-a

show-value C-x C-v

kill-ring-yank C-y

history-yank M-C-y
ESCAPE C-y
CLIM 2.2 User Guide 309

The input editor also supports numeric arguments (such as Control-0, Control-1, Meta-0, and so forth)

that modify the behavior of the input editing commands. For instance, the motion and deletion commands

are repeated as many times as specified by the numeric argument. This accumulated numeric argument is

passed to the command processor in such a way that substitute-numeric-argument-marker
can be used to insert the numeric argument into a command that was read via a keystroke accelerator.

add-input-editor-command [Function]

Arguments: gestures function

■ Adds an input editing command that causes function to be executed when the specified ges-

ture(s) are typed by the user. gestures is either a single gesture name, or a list of gesture names.

When gestures is a sequence of gesture names, the function is executed only after all of the ges-

tures are typed in order with no intervening gestures. (This is used to implement prefixed commands,

such as the Control-X Control-F command one might fix in EMACS.)

17.2 Concepts of CLIM's input editor

CLIM's input editor provides interactive parsing and prompting by interacting with the rest of CLIM's input

facility via rescanning.

A CLIM input editing stream encapsulates an interactive stream. That is, most stream operations are han-

dled by the encapsulated interactive stream, but some operations are handled directly by the input editing

stream itself.

An input editing stream has the following components:

• The encapsulated interactive stream.

• A buffer with a fill pointer, which we refer to as FP. The buffer contains all of the user's input, and

FP is the length of that input.

• An insertion pointer, which we refer to as IP. The insertion pointer is the point in the buffer at

which the editing cursor is.

• A scan pointer, which we refer to as SP. The scan pointer is the point in the buffer from which

CLIM will get the next input gesture object (in the sense of read-gesture).

• A ‘rescan queued’ flag indicating that the programmer (or the input editor itself) requested that a

rescan operation should take place before the next gesture is read from the user.

• A ‘rescan in progress’ flag that indicates that CLIM is rescanning the user's input, rather than

reading freshly supplied gestures from the user.

The high level description of the operation of the input editor is that it reads either real gestures from the

user (such as characters from the keyboard or pointer button events) or input editing commands. The input

yank-next M-y
ESCAPE y

scroll-forward C-v

scroll-backward M-v
ESCAPE v

Table 17.2: Keybindings for the input editor commands

Command Keybindings
310 CLIM 2.2 User Guide

editing commands can modify the state of the input buffer. When such modifications take place, it is neces-

sary to rescan the input buffer, that is, reset the scan pointer SP to its original state and reparse the contents

of the input editor buffer before reading any other gestures from the user. While this rescanning operation

is taking place, the ‘rescan in progress’ flag is set to t. The relationship SP ≤ IP ≤ FP always holds.

17.2.1 Detailed description of the input editor

This section describes the structure of the input editor in a fairly detailed way. If you plan to write complex

accept methods, you may need to understand the input editor at this level of detail. Otherwise, you may

skip this section.

The overall control structure of the input editor is:

(catch ’rescan ;thrown to when a rescan is invoked
 (reset-scan-pointer stream) ;sets STREAM-RESCANNING-P to T
 (loop
 (funcall continuation stream)))

where stream is the input editing stream and continuation is the code supplied by the programmer,

and typically contains calls to such functions as accept and read-token. When a rescan operation is

invoked, it has the effect of throwing to the rescan tag in the example above. The loop is terminated when

an activation gesture is seen, and at that point the values produced by continuation are returned as val-

ues from the input editor.

The important point is that functions such as accept, read-gesture, and unread-gesture read

(or restore) the next gesture object from the buffer at the position pointed to by the scan pointer SP. However,

insertion and input editing commands take place at the position pointed to by IP. The purpose of the rescan-

ning operation is to eventually ensure that all the input gestures issued by the user (typed characters, pointer

button presses, and so forth) have been read by CLIM. During input editing, CLIM display an editing cursor

to remind you of the position of IP.

The overall structure of read-gesture on an input editing stream is:

(progn
 (rescan-if-necessary stream)
 (loop
 ;; If SP is less than FP
 ;; Then get the next gesture from the input editor buffer at SP
 ;; and increment SP
 ;; Else read the next gesture from the encapsulated stream
 ;; and insert it into the buffer at IP
 ;; Set the "rescan in progress" flag to false
 ;; Call STREAM-PROCESS-GESTURE on the gesture
 ;; If it was a "real" gesture
 ;; Then exit with the gesture as the result
 ;; Else it was an input editing command (which has already been
 ;; processed), so continue looping
))

When a new gesture object is inserted into the input editor buffer, it is inserted at the insertion pointer IP.

If IP = FP, this is accomplished by a vector-push-extend-like operation on the input buffer and FP,

and then incrementing IP. If IP < FP, CLIM must first make room for the new gesture in the input buffer,

then insert the gesture at IP, then increment both IP and FP.
CLIM 2.2 User Guide 311

When the user requests an input editor motion command, only the insertion pointer IP is affected. Motion

commands do not need to request a rescan operation.

When the user requests an input editor deletion command, the sequence of gesture objects at IP are

removed, and IP and FP must be modified to reflect the new state of the input buffer. Deletion commands

(and other commands that modify the input buffer) must arrange for a rescan to occur when they are done

modifying the buffer, either by calling queue-rescan or immediate-rescan.

CLIM may also insert special objects in the input editor buffer, such as noise strings and accept results.

A ‘noise string’ is used to represent some sort of in-line prompt and is never seen as input; input-
editor-format and prompt-for-accept methods may insert a noise string into the input buffer.

An ‘accept result’ is an object in the input buffer that is used to represent some object that was inserted into

the input buffer (typically via a pointer gesture) that has no readable representation (in the Lisp sense);

presentation-replace-input may create accept results. Noise strings are skipped over by input

editing commands, and accept results are treated as a single gesture.

17.3 Functions for doing input editing

with-input-editing [Macro]

Arguments: (&optional stream &key initial-contents input-sensitizer
class) &body body

■ Establishes a context in which the user can edit the input he or she types in on the stream

stream. body is then executed in this context, and the values returned by body are returned as the

values of with-input-editing.

The stream argument is not evaluated, and must be a symbol that is bound to a CLIM input

stream. If stream is t (the default), *standard-input* is used. If stream is a stream that is

not an interactive stream, then with-input-editing acts like progn.

initial-contents is a string to become the initial contents of the stream to be edited.

input-sensitizer, if it is supplied, is a function of two arguments, a stream and a contin-

uation. The input-sensitizer function should call the continuation on the stream. For exam-

ple, the implementation of accept uses something like the following in order to make the user's

input sensitive as a presentation for later use:

(flet ((input-sensitizer (continuation stream)

 (if (clim:stream-recording-p stream)

 (clim:with-output-as-presentation (stream object type)

 (funcall continuation stream))

 (funcall continuation stream))))

 (clim:with-input-editing (stream :input-sensitizer #’input-
sensitizer)

 ...))

class is the name of a stream class to use as the input editing stream; it defaults to CLIM's

standard input editing stream class.

■ Usually you will not need to use with-input-editing, since calls to accept set up an

input editing context for you.
312 CLIM 2.2 User Guide

with-input-editor-typeout [Macro]

Arguments: (&optional stream &key erase) &body body

■ If, when some code is inside of a call to with-input-editing, you wish to perform some

sort of typeout, it should be done inside with-input-editor-typeout. This form collects the

output done by body to stream, clears some space, and then displays the output.

For example, the following fragment could be used to display the argument for a Lisp function

while doing input editing on Lisp forms:

(clim:with-input-editor-typeout (stream)

 (format stream "~S: (~~A~^ ~)" symbol arglist))

If stream is not an input editing stream, with-input-editor-typeout behaves like

progn.

In some circumstances, with-input-editor-typeout will not clear out the space over

which the typeout will be displayed. In that case, you should supply :erase t.

input-editor-format [Function]

Arguments: stream format-string &rest format-args

■ This function is like format, except that it is intended to be called on input editing streams. It

arranges to insert a noise string in the input editor's input buffer that represents the output specified

by format-string and format-args. format-string and format-args are as for

format.

■ You can use this to display in-line prompts in accept methods.

17.4 The input editing protocol

input-editing-stream-p [Function]

Arguments: object

■ Returns t if object is an input editing stream (that is, a stream of the sort created by a call to

with-input-editing), otherwise returns nil.

stream-insertion-pointer [Generic function]

Arguments: stream

■ Returns an integer corresponding to the current input position in the input editing stream

stream's buffer, that is, the point in the buffer at which the next user input gesture will be inserted.

The insertion pointer will always be less than (fill-pointer (stream-input-buffer
stream)). The insertion pointer is used as the location of the editing cursor.

(setf stream-insertion-pointer) [Generic function]

Arguments: pointer stream

■ Changes the input position of the input editing stream stream to pointer. pointer is an

integer, and must be less than (fill-pointer (stream-input-buffer stream)).
CLIM 2.2 User Guide 313

stream-scan-pointer [Generic function]

Arguments: stream

■ Returns an integer corresponding to the current scan pointer in the input editing stream stream's

buffer, that is, the point in the buffer at which calls to accept have stopped parsing input. The scan

pointer will always be less than or equal to (stream-insertion-pointer stream).

(setf stream-scan-pointer) [Generic function]

Arguments: pointer stream

■ Changes the scan pointer of the input editing stream stream to pointer. pointer is an inte-

ger, and must be less than or equal to (stream-insertion-pointer stream).

stream-rescanning-p [Generic function]

Arguments: stream

■ Returns the state of the input editing stream stream's ‘rescan in progress’ flag, which is t if

stream is performing a rescan operation, otherwise it is nil. Non-input editing streams always

return nil.

reset-scan-pointer [Generic function]

Arguments: stream &optional (scan-pointer 0)

■ Sets the input editing stream stream's scan pointer to scan-pointer, and sets the state of

stream-rescanning-p to t.

immediate-rescan [Generic function]

Arguments: stream

■ Invokes a rescan operation immediately by throwing out to the beginning of the most recent invo-

cation of with-input-editing.

queue-rescan [Generic function]

Arguments: stream

■ Indicates that a rescan operation on the input editing stream stream should take place after the

next non-input editing gesture is read. This works by setting the ‘rescan queued’ flag to t.

rescan-if-necessary [Generic function]

Arguments: stream &optional inhibit-activation

■ Invokes a rescan operation on the input editing stream stream if queue-rescan was called

on the same stream and no intervening rescan operation has taken place. Resets the state of the ‘res-

can queued’ flag to nil.

If inhibit-activation is nil, the input line will not be activated even if there is an acti-

vation character in it.

erase-input-buffer [Generic function]

Arguments: stream &optional (start-position 0)

■ Erases the part of the display that corresponds to the input editor's buffer starting at the position

start-position.
314 CLIM 2.2 User Guide

redraw-input-buffer [Generic function]

Arguments: stream &optional (start-position 0)

■ Displays the input editor's buffer starting at the position start-position on the interactive

stream that is encapsulated by the input editing stream stream.

17.5 Examples of extending the input editor

The following is an example of a non-destructive input editing command that displays the current value of

a symbol. Every input editing command is passed four required arguments, the input editing stream, its input

buffer, the gesture used to invoke the command, and the accumulated numeric argument. This function

assumes the existence of a function the locates a symbol at the current input editing position.

(defun com-ie-show-value (stream input-buffer gesture numeric-argument)
 (declare (ignore gesture numeric-argument))
 (let* ((symbol (symbol-at-position stream input-buffer))
 (value (and symbol
 (boundp symbol)
 (symbol-value symbol))))
 (if value
 (clim:with-input-editor-typeout (stream)
 (format stream "~S: ~S" symbol value))
 (beep stream))))

You could add this command to the set of input editing commands by calling add-input-editor-
command.

The following could be used to implement the ‘forward character’ command.

(defun com-ie-forward-character (stream input-buffer gesture numeric-argument)
 (declare (ignore gesture))
 (let ((ip (clim:stream-insertion-pointer stream))
 (limit (fill-pointer input-buffer)))
 (setq ip (min limit (+ ip numeric-argument)))
 (setf (clim:stream-insertion-pointer stream) ip)))

The following could be used to implement the ‘delete character’ command. Note that this example causes

a rescan operation to take place; all destructive editing commands must do this.

(defun com-ie-delete-character (stream input-buffer gesture numeric-argument)
 (declare (ignore gesture))
 (let* ((p1 (clim:stream-insertion-pointer stream))
 (limit (fill-pointer input-buffer))
 (p2 (min limit (+ p1 numeric-argument))))
 ;; Erase what used to be on the screen
 (clim:erase-input-buffer stream p1)
 ;; Shift the input buffer down over the deleted stuff
 (replace input-buffer input-buffer :start1 p1 :start2 p2)
 (decf (fill-pointer input-buffer) (- p2 p1))
 ;; Make sure the scan pointer doesn’t point past the insertion pointer
 (minf (clim:stream-scan-pointer stream)
 (clim:stream-insertion-pointer stream))
 ;; Redraw the input buffer
CLIM 2.2 User Guide 315

 (clim:redraw-input-buffer stream)
 ;; If the buffer is now empty, rescan immediately so that the state
 ;; of the input editor gets reinitialized. Otherwise queue a rescan
 ;; for later
 (if (zerop (fill-pointer input-buffer))
 (clim:immediate-rescan stream)
 (clim:queue-rescan stream))))
316 CLIM 2.2 User Guide

Chapter 18 Output recording in CLIM

18.1 Concepts of CLIM output recording

CLIM provides a mechanism called output recording whereby output (textual and graphical) may be cap-

tured into an output history for later replay on the same stream. This mechanism serves as the basis for many

other tools, such as scrolling, formatted output of tables and graphs, for the ability of presentations to retain

their semantics, and for incremental redisplay.

The output recording facility is layered on top of the basic graphics and text output facilities. It works by

intercepting the operations in the graphics and text output protocols, and saving information about these

operations in objects called output records. In general, an output record is a kind of display list, that is, a

collection of instructions for drawing something on a stream. Some output records may have children, that

is, a collection of inferior output records. Other output records, which are called displayed output records,

correspond directly to displayed information on the stream, and do not have children. If you think of output

records being arranged in a tree, displayed output records are all of the leaf nodes in the tree, for example,

displayed text and graphics records.

Displayed output records record the state of the supplied drawing options at the instant the output record

is created. This includes the ink, line style, text style, and clipping region at the time the output record is

created, and the coordinates of the output transformed by the user transformation. When you replay an out-

put record later on, the saved information will be used; any new user transformation, clipping region, or line

style will not affect the replayed output.

A CLIM stream that supports output recording has an output history object, which is a special kind of

output record that supports some other operations. CLIM defines a standard set of output history implemen-

tations and a standard set of output record types.

The output recording mechanism is enabled by default on CLIM streams. Unless you turn it off, all output

that occurs on a window is captured and saved by the output recording mechanism.

18.1.1 Uses of output recording

One use of an output record is to replay it -- to produce the output again. Scrolling is implemented by replay-

ing the appropriate output records.

CLIM's table and graph formatters are implemented on top of output records. For example, when your

code uses formatting-table and formats output into rows and cells, this output is sent to a particular

stream. Invisibly to you, CLIM temporarily binds this stream to an intermediate stream, and runs a con-

straint engine over the code to determine the layout of the table. The result is a set of output records which

contain the table, its rows, and its cells. Finally, CLIM replays these output records to your original stream.

When using the techniques of incremental redisplay, your code determines which portions of the display

have changed, then the appropriate output records are updated to the new state, and the only the changed

output records are replayed.
CLIM 2.2 User Guide 317

Presentations are a special case of output records that remember the object and the type of object associ-

ated with the output.

18.2 CLIM operators for output recording

The purpose of output recording is to capture the output done by an application onto a stream. The objects

used to capture output are called output records and displayed output records. An output record is an object

that stores other output records. Displayed output records are the objects contained in output records that

correspond to an atomic piece of output, such as a circle or a piece of text; these are most like traditional

display list items. The following classes and predicates correspond to the objects used in output recording.

output-record [Class]

■ The protocol class that is used to indicate that an object is an output record, that is, a CLIM data

structure that contains other output records. If you want to create a new class the obeys the output

record protocol, it must be a subclass of output-record.

If you think of output records being arranged in a tree, output records are the non-leaf nodes of the tree.

output-record-p [Function]

Arguments: object

■ Returns t if and only object is of type output-record.

displayed-output-record [Class]

■ The protocol class that is used to indicate that an object is a displayed output record, that is, a

CLIM data structure that represents a visible piece of output on an output device. If you want to cre-

ate a new class the obeys the displayed output record protocol, it must be a subclass of displayed-
output-record.

If you think of output records being arranged in a tree, displayed output records are the leaves of

the tree. Displayed text and graphics are examples of things that are displayed output records.

displayed-output-record-p [Function]

Arguments: object

■ Returns t if and only object is of type displayed-output-record.

The following functions and macros can be used to create and operate on CLIM output records.

with-new-output-record [Macro]

Arguments: (stream &optional record-type record &rest initargs) &body
body

■ Creates a new output record of type record-type (which defaults to CLIM's default sequence

output record) and then captures the output of body into the new output record. The new record is

then inserted into the current open output record associated with stream (that is,

(clim:stream-current-output-record stream).

If record is supplied, it is the name of a variable that will be lexically bound to the new output

record inside of body. initargs are CLOS initargs that are passed to make-instance when

the new output record is created.

with-new-output-record returns the output record it creates.
318 CLIM 2.2 User Guide

invoke-with-new-output-record [Generic function]

Arguments: stream function record-type constructor &rest initargs

■ This is the functional version of with-new-output-record. stream and record-type
are the same as for with-new-output-record.

constructor is a constructor function that creates the new output record. Since it is for

CLIM's internal use, you should generally supply nil for this.

function is a function of one argument, a stream; it is called to generate the output to be

inserted into the newly created output record.

with-output-to-output-record [Macro]

Arguments: (stream &optional record-type record &rest initargs) &body
body

■ This is similar to with-new-output-record except that the new output record is not

inserted into the output record hierarchy. That is, when you use with-output-to-output-
record, no drawing on the stream occurs and nothing is put into the stream's normal output history.

Unlike in facilities such as with-output-to-string, stream must be an actual stream, but

no output will be done to it.

record-type is the type of output record to create, which defaults to CLIM's default sequence

output record type. initargs are CLOS initargs that are used to initialize the record.

If record is supplied, it is a variable which will be bound to the new output record while body
is evaluated.

■ The new output record is returned.

with-output-recording-options [Macro]

Arguments: (stream &key draw record) &body body

■ Used to disable output recording and/or drawing on the given stream, within the extent of body.

If draw is nil, output to the stream is not drawn on the viewport, but can still be recorded in the

output history. If record is nil, output recording is disabled but output otherwise proceeds nor-

mally.

replay [Function]

Arguments: record stream &optional region

■ Replays all of the output captured by the output record record on stream by calling replay-
output-record. If region is supplied and is a region, then record is replayed if and only if

it overlaps region. region defaults to the viewport of stream, or to stream's entire region if it

has no viewport.

Changing the transformation of the stream during replaying has no effect on what is output by

replay.

replay-output-record [Generic function]

Arguments: record stream &optional region x-offset y-offset

■ Replays all of the output captured by the output record record on stream. If region is not

nil, then record is replayed if and only if it overlaps region.

x-offset and y-offset are output record offsets that are necessitated by CLIM's represen-

tation of output records. In a later release of CLIM, the representation of output records may change

in such a way that the x-offset and y-offset arguments are removed.
CLIM 2.2 User Guide 319

Changing the transformation of the stream during replaying has no effect on what is output by

replay-output-record.

You can specialize this generic function for your own classes of output records. If you write your

own output record class that is a subclass of displayed-output-record, you must implement

or inherit a method for this generic function for that class.

18.2.1 Examples of creating and replaying output records

CLIM's indenting-output facility could have been implemented in the following way. First, drawing

is disabled, then the user's output is collected, then indented, and finally replayed.

(defmacro indenting-output ((stream indentation) &body body)
 ‘(let ((record
 (clim:with-output-recording-options (,stream :draw nil :record t)
 (clim:with-new-output-record (,stream)
 ,@body))))
 (multiple-value-bind (x y) (clim:output-record-position record)
 (clim:output-record-set-position record (+ x ,indentation) y))
 (clim:tree-recompute-extent record)
 (clim:replay record ,stream)
 record))

The following could be used to measure the size of some output without actually doing the output.

(defmacro compute-output-size ((stream) &body body)
 ‘(let ((record
 (clim:with-output-to-output-record (,stream)
 ,@body)))
 (clim:bounding-rectangle-size record)))

18.2.2 Output record database functions

The following functions implement the ‘database’ protocol of output records. If you implement your own

output record that is a subclass of output-record, you must implement or inherit methods for these

functions.

output-record-parent [Generic function]

Arguments: record

■ Returns an output record that is the parent of the output record record. If record has no par-

ent, this will return nil.

output-record-children [Generic function]

Arguments: record

■ Returns a sequence of all of the children of the output record record.

For some classes of output record, this function can be very inefficient because the class does not

store the children in the form of a sequence. It is often better to use map-over-output-
records.
320 CLIM 2.2 User Guide

output-record-count [Generic function]

Arguments: record

■ Returns the number of children contained within the output record record.

add-output-record [Generic function]

Arguments: child record

■ Adds the output record child to the output record record. It also sets the parent of child to

be record.

delete-output-record [Generic function]

Arguments: child record &optional errorp

■ Removes the output record child from the output record record. If child is not contained

in record and errorp is t, an error is signaled.

Note that calling delete-output-record to delete a child from some output record

record while inside of a call to any of the mapping functions on the same output record record
will not work as expected. You should use the mapping function to collect all the records to be

deleted, then call delete-output-record to delete the set of output records.

erase-output-record [Generic function]

Arguments: record stream &optional (errorp t)

■ Erases the output record record from stream, and removes the record from stream's output

history. After the record is erased, all of the output records that overlapped it are replayed in order to

ensure that the appearance of the rest of the output on stream is correct.

errorp is as for delete-output-record.

record can be a list of output records rather than a single output record. In that case, the replay

operation will be delayed until after all of the output records have been removed from the output his-

tory. Passing a list of output records to erase-output-record can be substantially faster than

calling erase-output-record multiple times.

clear-output-record [Generic function]

Arguments: record

■ Removes all of the output records from the output record record.

The following functions can be used to apply a function to all of the children of an output record.

map-over-output-records [Function]

Arguments: continuation record &optional (x-offset 0) (y-offset 0)
&rest continuation-args

■ Applies the function continuation to all of the output records contained in the output record

record. Normally, continuation is called with a single argument, an output record. If con-
tinuation-args is supplied, they are passed to continuation as well.

x-offset and y-offset are output record offsets that are necessitated by CLIM's represen-

tation of output records.
CLIM 2.2 User Guide 321

map-over-output-records-containing-position [Generic function]

Arguments: continuation record x y &optional x-offset y-offset &rest
continuation-args

■ Applies the function continuation to all of the output records contained in the output record

record that overlap the point (x,y). Normally, continuation is called with a single argument,

an output record. If continuation-args is supplied, they are passed to continuation as

well.

x-offset and y-offset are output record offsets that are necessitated by CLIM's represen-

tation of output records.

When map-over-output-records-containing-position maps over the children

in the record, it does so in such a way that, when it maps over overlapping records, the bottom-most

(least recently inserted) record is hit last. This is because this function is used for things like locating

the presentation under the pointer, where the topmost record should be the one that is found.

map-over-output-records-overlapping-region [Generic function]

Arguments: continuation record region &optional x-offset y-offset
&rest continuation-args

■ Applies the function continuation to all of the output records contained in the output record

record that overlap the region region. Normally, continuation is called with a single argu-

ment, an output record. If continuation-args is supplied, they are passed to continuation
as well.

x-offset and y-offset are output record offsets that are necessitated by CLIM's represen-

tation of output records.

When map-over-output-records-overlapping-region maps over the children in

the record, it does so in such a way that, when it maps over overlapping records, the topmost (most

recently inserted) record is hit last. This is because this function is used for things such as replaying,

where the most recently drawn thing must come out on top (that is, must be drawn last).

18.2.3 Output record change notification protocol

The following functions are called by programmers and by CLIM itself in order to notify a parent output

record when the bounding rectangle of one of its child output record changes. You will need to use these if

you implement your own formatting engine, for example, a new type of table or graph formatting.

recompute-extent-for-new-child [Generic function]

Arguments: record child

■ This function is called whenever a new child is added to an output record. Its contract is to update

the bounding rectangle of the output record record to be large enough to completely contain the

new child output record child. The parent of record will be notified by calling recompute-
extent-for-changed-child.

An :after method on add-output-record calls recompute-extent-for-new-
child, so you will rarely need to call it yourself.
322 CLIM 2.2 User Guide

recompute-extent-for-changed-child [Generic function]

Arguments: record child old-min-x old-min-y old-max-x old-max-y

■ This function is called whenever the bounding rectangle of one of the children of a record has been

changed. Its contract is to update the bounding rectangle of the output record record to be large

enough to completely contain the new bounding rectangle of the child output record child. All of

the ancestors of record are notified by recursively calling recompute-extent-for-
changed-child.

An :after method on delete-output-record calls recompute-extent-for-
changed-child to inform the parent of the record that a change has taken place, so you will rarely

need to call this yourself.

tree-recompute-extent [Generic function]

Arguments: record

■ This function is called whenever the bounding rectangles of a number of children of a record have

been changed, such as happens during table and graph formatting. Its contract is to compute the

bounding rectangle large enough to contain all of the children of the output record record, adjust

the bounding rectangle of the output record record accordingly, and then call recompute-
extent-for-changed-child on record.

Whenever you write a new formatting facility that rearranges the descendents of an output record

(for example, a new kind of graph formatting), you should call tree-recompute-extent on the

parent of the highest level record that was affected.

18.2.4 Operations on output recording streams

The following functions can be used to operate on output recording streams.

output-recording-stream-p [Function]

Arguments: object

■ Returns t if an only if object is an output recording stream.

stream-output-history [Generic function]

Arguments: stream

■ Returns the top level output record for the stream stream. You cannot use setf to set the stream

output history of a pane. Instead, you should create the pane with the :output-record initarg

specified, as in the following example:

(define-application-frame test ()
 ()
 (:panes
 (display :application
 :output-record (make-instance ’standard-tree-output-history)))
 (:layouts
 (:default
 display)))
CLIM 2.2 User Guide 323

stream-current-output-record [Generic function]

Arguments: stream

■ The current open output record for the output recording stream stream, the one to which

stream-add-output-record will add a new child record. Initially, this is the same as

stream-output-history. As applications created nested output records, this acts as a stack.

stream-replay [Generic function]

Arguments: stream &optional region

■ Replays all of the output records in stream's output history that overlap the region region. If

region is supplied and is a region, then record is replayed if and only if it overlaps region.

region defaults to the viewport of stream, or to stream's entire region if it has no viewport.

stream-drawing-p [Generic function]

Arguments: stream

■ Returns t if and only if drawing is enabled on the output recording stream stream. You can use

setf on this to enable or disabled drawing on the stream, or you can use the :draw option to

with-output-recording-options.

stream-recording-p [Generic function]

Arguments: stream

■ Returns t if and only if output recording is enabled on the output recording stream stream. You

can use setf on this to enable or disabled output recording on the stream, or you can use the

:record option to with-output-recording-options.

copy-textual-output-history [Function]

Arguments: window stream &optional region record

■ Given a window window that supports output recording, this function finds all of the textual out-

put records that overlap the region region (or all of the textual output records if region is not

supplied), and outputs that text to stream. This can be used when you want to capture all of the text

on a window into a disk file for later perusal.

stream-add-output-record [Generic function]

Arguments: stream record

■ Adds the output record record to the stream's current output record (that is, stream-
current-output-record).

18.3 Standard output record classes

The following output record classes are supported by CLIM. The history classes should be used for top-

level output records.

standard-sequence-output-record [Class]

■ The standard instantiable class provided by CLIM to store a relatively short sequence of output

records; a subclass of output-record. The insertion and retrieval complexity of this class is

O(n). Most of the formatted output facilities (such as formatting-table) create output records

that are a subclass of standard-sequence-output-record.
324 CLIM 2.2 User Guide

standard-sequence-output-history [Class]

■ An instantiable class provided by CLIM to use for top-level output records that have only a small

number of children. This is a subclass of standard-sequence-output-record.

■ In release 2.0 final, this is the default class used by CLIM streams for output history.

standard-tree-output-record [Class]

■ The standard instantiable class provided by CLIM to store longer sequences of output records.

This class is optimized to store output records that tend to be created one after another with ascending

y coordinates, such as you would find in a scrolling window of text. The insertion and retrieval com-

plexity of this class is roughly O(log n), but can break down to be O(n).

standard-tree-output-history [Class]

■ The standard instantiable class provided by CLIM to use as the top-level output history. This is a

subclass of standard-tree-output-record.

■ In releases prior to CLIM 2.0 final (the various alpha and beta releases), this class was used by

default by CLIM streams for their output history. However, this class has known problems when the

output records overlap. If you have non-overlapping records, using this class will make things run

faster. However, if your output records overlap, using this class may not work properly.

r-tree-output-history [Class]

■ An instantiable class provided by CLIM to use as the top-level output history for highly overlap-

ping graphical output. Although its insertion and retrieval complexity is O(log n), the overhead of the

class is high.

You should use this only for such applications as graphical editors that will maintain a fairly large

number of objects.
CLIM 2.2 User Guide 325

[This page intentionally left blank.]
326 CLIM 2.2 User Guide

Chapter 19 Streams and windows in
CLIM

CLIM performs all of its input and output operations on objects called streams. A stream in CLIM is a sheet

with a medium that supports CLIM's stream protocol. The stream protocols are partitioned into two layers:

the basic stream protocol, and the extended stream protocol.

The basic stream protocol is character-based and compatible with existing Common Lisp programs.

(Note that the basic stream protocol is not documented in this user guide, but is documented as part of Com-

mon Lisp). The standard Common Lisp stream functions work on CLIM streams in all CLIM implementa-

tions.

You can use the extended stream protocol to include pointer events and synchronous window-manager

communication.

19.1 Extended stream input in CLIM

CLIM defines an extended input stream protocol. This protocol extends the basic input stream model to

allow manipulation of non-character user gestures, such as pointer button presses.

19.1.1 Operators for extended stream input

extended-input-stream-p [Generic function]

Arguments: object

■ Returns t if the object is a CLIM extended input stream, otherwise returns nil. This function

will always return t when given a CLIM stream pane.

read-gesture [Function]

Arguments: &key (stream *standard-input*) timeout peek-p
input-wait-test input-wait-handler
pointer-button-press-handler

■ Returns the next gesture available in the input stream, which will be either a character or an event

object, such as a pointer button event. Note that read-gesture does not echo character input.

When the user types any sort of abort gesture (that is, a character that matches any of the gesture

names in *abort-gestures*), the abort-gesture condition is signaled.

If the user types an accelerator gesture (that is, a gesture that matches any of the gesture names

in *accelerator-gestures*), then the accelerator-gesture condition is signaled.
CLIM 2.2 User Guide 327

timeout

Specifies the number of seconds that read-gesture will wait for input to become available,

or nilmeaning that there is no timeout. If no input is available when the timeout expires, read-
gesture will return the two values nil and :timeout.

peek-p

If t, specifies that the gesture returned will be left in the stream's input buffer.

input-wait-test

The value of this argument is a function. The function will be invoked with one argument, the

stream. The function should return t when there is input to process, otherwise it should return

nil. This argument will be passed on to stream-input-wait.

input-wait-handler

The value of this argument is a function. The function will be invoked with one argument, the

stream, when the invocation of stream-input-wait returns, but no input gesture is avail-

able. This option can be used in conjunction with input-wait-test to handle conditions

other than user keystroke gestures.

pointer-button-press-handler

is a function of two arguments, the stream and a pointer button press event. It is called when the

user clicks a pointer button.

■ Most programmers will never need to use :input-wait-test, :input-wait-handler,

and :pointer-button-press-handler.

unread-gesture [Function]

Arguments: gesture &key (stream *standard-output*)

■ Places the specified gesture back into stream's input buffer. The next read-gesture
request will return the unread gesture. The gesture supplied must be the most recent gesture read

from the stream.

stream-input-wait [Generic function]

Arguments: stream &key timeout input-wait-test

■ Waits until timeout has expired or input-wait-test returns a non-nil value. Otherwise

the function waits until there is input in the stream.

timeout

Specifies the number of seconds that stream-input-wait will wait for input to become

available. If no input is available, stream-input-wait will return two values, nil and

:timeout. If nil (the default), it will wait indefinitely.

input-wait-test

The value of this argument is a function. The function will be invoked with one argument, the

stream. If the function returns nil, stream-input-waitwill continue to wait for user input.

If it returns t, stream-input-waitwill return two values, nil and :input-wait-test.

abort-gestures [Variable]

■ A list of gestures that causes the current input to be aborted.

abort-gesture [Condition]

■ The abort-gesture condition is signaled whenever CLIM reads an abort gesture from the

user. For example, on Allegro, read-gesture will signal this condition if the user presses Con-

trol-Z.
328 CLIM 2.2 User Guide

abort-gesture-event [Generic function]

Arguments: abort-gesture

■ Returns the event object that caused the abort gesture condition, abort-gesture, to be sig-

naled.

accelerator-gestures [Variable]

■ A list of the currently active keystroke accelerator gestures.

accelerator-gesture [Class]

■ The accelerator-gesture condition is signaled whenever CLIM reads an accelerator ges-

ture from the user.

accelerator-gesture-event [Generic function]

Arguments: accelerator-gesture

■ Returns the event object that caused the accelerator gesture condition, accelerator-ges-
ture, to be signaled.

accelerator-gesture-numeric-argument [Generic function]

Arguments: accelerator-gesture

■ Returns the numeric argument associated with the accelerator gesture condition, accelera-
tor-gesture. If the user did not supply a numeric argument explicitly, this will return 1.

19.2 Extended stream output in CLIM

In addition to the basic output stream protocol, CLIM defines an extended output stream protocol. This pro-

tocol extends the stream model to allow the manipulation of a text cursor.

extended-output-stream-p [Generic function]

Arguments: object

■ Returns t if the object is a CLIM extended output stream, otherwise returns nil. This function

will always return t when given a CLIM stream pane.

19.3 Manipulating the cursor in CLIM

CLIM extends the output stream model to allow the manipulation of a text cursor. A CLIM stream has a text

cursor position, which is the place on the drawing plane where the next piece of text output will be drawn.

Common Lisp stream output operations place text at the cursor position and advances the cursor position

past the text. Certain CLIM output operations, such as present and formatting-table, do the same.

CLIM's graphical drawing function, such as draw-line* and draw-text* functions, on the other

hand, pay no attention to the text cursor position. You can use with-room-for-graphics, which does

graphical output at the current text cursor position, to tie text and graphics together

Common Lisp stream input operations that echo, such as read-line, as well as accept, echo the

input at the cursor position, and advance the cursor position as the user types characters on the keyboard.
CLIM 2.2 User Guide 329

19.3.1 Operators for manipulating the cursor

stream-cursor-position [Generic function]

Arguments: stream

■ Returns two values, the x and y coordinates of the cursor position on stream's drawing plane.

You can use stream-set-cursor-position or stream-increment-cursor-
position to change the cursor position.

stream-set-cursor-position [Generic function]

Arguments: stream x y

■ Moves the cursor position to the specified x and y coordinates on stream's drawing plane.

stream-increment-cursor-position [Generic function]

Arguments: stream dx dy

■ Moves the cursor position relative to its current position, adding dx to the x coordinate and adding

dy to the y coordinate. Either argument dx or dy can be nil, which means that CLIM will not

change that coordinate.

stream-text-cursor [Generic function]

Arguments: stream

■ Returns the text cursor object for the stream stream.

cursor-position [Generic function]

Arguments: cursor

■ Returns the cursor position of cursor, relative to the sheet on which the cursor is located.

cursor-set-position [Generic function]

Arguments: cursor x y

■ Sets the cursor position of cursor to x and y, which are relative to the sheet on which the cursor

is located.

cursor-sheet [Generic function]

Arguments: cursor

■ Returns the sheet on which cursor is located.

cursor-active [Generic function]

Arguments: cursor

■ Returns the active attribute of the cursor. An active cursor is one that is being actively maintained

by its owning sheet. When t, the cursor is active.

You can use setf on this to change the active attribute of the cursor.

cursor-state [Generic function]

Arguments: cursor

■ Returns the state attribute of the cursor. An active cursor has a state that is either on or off. When

t, the cursor is visible. When nil, the cursor is not visible.

You can use setf on this to change the state attribute of the cursor.
330 CLIM 2.2 User Guide

cursor-focus [Generic function]

Arguments: cursor

■ Returns the focus attribute of the cursor. An active cursor has a state that indicates the owning

sheet has the input focus. When t, the sheet owning the cursor has the input focus.

You can use setf on this to change the focus attribute of the cursor.

cursor-visibility [Generic function]

Arguments: cursor

■ This are convenience functions that combine the functionality of cursor-active and

cursor-state. The visibility can be either :on (meaning that the cursor is active and visible at

its current position), :off (meaning that the cursor is active, but not visible at its current position),

or nil (meaning that the cursor is not activate).

You can use setf on this to change the visibility of the cursor.

19.3.2 Text measurement operations in CLIM

These functions compute the change in the cursor position that would occur if some text were output (that

is, without actually doing any output and without changing the cursor position).

stream-character-width [Generic function]

Arguments: stream character &optional text-style

■ The horizontal motion of the cursor position that would occur if this character were output

onto stream in the text style text-style. Note that this ignores the text margin of the stream

(stream-text-margin).

text-style defaults to the stream's current text style. The result depends on the current cur-

sor position when the character is Newline or Tab.

stream-line-height [Generic function]

Arguments: stream &optional text-style

■ Returns what the line height of a line containing text in that text-style would be. text-
style defaults to the stream's current text style.

stream-vertical-spacing [Generic function]

Arguments: stream

■ Returns the amount of vertical space between consecutive lines on stream.

stream-baseline [Generic function]

Arguments: stream

■ Returns the current text baseline on stream.

stream-text-margin [Generic function]

Arguments: stream

■ The x coordinate at which text wraps around (see stream-end-of-line-action). The

default setting is the width of the viewport, which is the right-hand edge of the viewport when it is

horizontally scrolled to the initial position.
CLIM 2.2 User Guide 331

You can use setf with stream-text-margin. If a value of nil is specified, the width of

the viewport will be used. If the width of the viewport is later changed, the text margin will change

too.

text-size [Generic function]

Arguments: medium string &key text-style start end

■ Computes how the cursor position would move if the specified string or character were output

to medium starting at cursor position (0,0). Note that, when called on a CLIM stream, this ignores

the stream's text margin, that us, all output is done on a single line (except, of course, when newlines

are explicitly included in the output).

■ text-size returns five values:

• the total width of the string in device units

• the total height of the string in device units

• the final X cursor position, which is the same as the width if there are no Newline characters in

the string

• the final Y cursor position, which is 0 if the string has no Newline characters in it, and is

incremented by the line height for each Newline character in the string

• the string's baseline

text-style defaults to the medium's current text style. start and end default to 0 and the

length of the string, respectively.

■ Note that text-size is a fairly low level function. If you find you need to use it often, you may

be working at too low a level of abstraction.

Here are a few examples of use of text-size.

(clim:text-size *standard-output* (format nil "Hi there"))
→ 64 12 64 0 10

(clim:text-size *standard-output* (format nil "Hi~%there"))
→ 40 24 40 12 10

That is, the first example is a maximum of 64 device units wide, 12 units high, the final X cursor position

is 64, the final Y cursor position is 0 (that is, the text is only one line high so the Y cursor did not advance),

and the baseline is 10. In the second example, the maximum width is 40, the height is 24, the final X cursor

position in 40, the final Y cursor position is 12, and the baseline is 10.

total width

total height
final x cursor position

final y cursor position

baseline

total width

total height
final x cursor position

final y cursor position

baseline
332 CLIM 2.2 User Guide

stream-string-width [Generic function]

Arguments: stream string &key start end text-style

■ Computes how the cursor position would move horizontally if the specified string were output

starting at the left margin. Note that this ignores the stream's text margin.

The first value is the x coordinate the cursor position would move to. The second value is the

maximum x coordinate the cursor would visit during the output. (This is the same as the first value

unless the string contains a Newline.)

start and end default to 0 and the length of the string, respectively.

text-style defaults to the stream's current text style.

■ Note that stream-string-width is a fairly low level function. If you find you need to use it

often, you may be working at too low a level of abstraction.

19.4 Attracting attention, selecting a file, noting progress

Attracting attention
CLIM supports the following operators for attracting the user's attention:

beep [Function]

Arguments: &optional (stream *standard-output*)

■ Attracts the user's attention, usually with an audible sound.

notify-user [Generic function]

Arguments: frame message &rest options

■ Notifies the user of some event on behalf of the application frame frame. message is a message

string. The possible options are:

Option Value

:associated-window (as for menu-choose)

:title a string used to label the notification; default

is "Notify User".

:documentation documentation string, default nil.

:exit-boxes (as for accepting-values)

:name a string that names the widget; default, the

value of :title.

:text-style (as for menu-choose)

:style (see just below)
CLIM 2.2 User Guide 333

■ :style can be:

:inform Tell the user something (the default)

:error Tell the user about an error

:question Question the user (e.g. ‘Delete this file y-or-n?’)

:warning Warn the user

Selecting a file

select-file [Generic function]

Arguments: frame &rest options

■ Pops up a dialog to select a file and returns the name of the file selected. The options are:

Noting progress
The following functionality is provided for noting progress:

current-progress-note [Variable]

■ This variable is used as the default progress note in all of the following functions.

noting-progress [Macro]

Arguments: (stream name &optional note-var) &body body

■ Establishes a progress noting context in which body is executed. note-var is a variable to

which a progress note is bound during the execution of body. note-var defaults to *current-
progress-note*. name is the name given to the progress note and should be a string. stream
should be a CLIM stream pane used as the associated window for any progress notification windows.

■ Within body, calls to note-progress will display progress notification

Option Value

:associated-window (as for menu-choose)

:title string to label dialog; default "Select File".

:documentation documentation string, default nil.

:exit-boxes (as for menu-choose)

:name string naming dialog; default :select-
file.

:directory-list-label a string to label the list of directories.

:file-list-label a string to label the list of files.

:directory a string specifying the initial directory used.

:pattern a string defining the file search pattern.

:text-style (as for menu-choose)

:dialog-type (Windows only) choices are :open and :save.

:open allows opening an existing file only.

:save allows any file.
334 CLIM 2.2 User Guide

dotimes-noting-progress [Macro]

Arguments: (var countform &optional stream note-var) &body body

■ This is like the Common Lisp form dotimes but in addition progress notes are automatically

generated each time through the loop. var and countform are as in dotimes. stream and

note-var are as in noting-progress. note-progress is automatically called each time

through the loop but additional calls can be made within body.

dolist-noting-progress [Macro]

Arguments: (var listform &optional stream note-var) &body body

■ This is like the Common Lisp form dolist but in addition progress notes are automatically gen-

erated each time through the loop. var and listform are as in dolist. stream and note-var
are as in noting-progress. note-progress is automatically called each time through the

loop but additional calls can be made within body.

note-progress [Function]

Arguments: numerator &optional (denominator 1) note

■ This displays progress notification for progress note note. note defaults to *current-
progress-note*. This function is typically called within one of the above 3 macros.

19.5 Window stream operations in CLIM

The following functions can be called on any CLIM stream pane (that is, any pane that is a subclass of

clim-stream-pane). Such a pane is often simply referred to as a ‘window’. These are provided purely

as a convenience for programmers.

19.5.1 Clearing and refreshing the drawing plane in CLIM

CLIM supports the following operators for clearing and refreshing the drawing plane:

window-clear [Generic function]

Arguments: window

■ Clears the entire drawing plane of window, filling it with the background design. window-
clear also discards the window's output history and resets the cursor position to the upper left cor-

ner.

window-erase-viewport [Generic function]

Arguments: window

■ Clears the visible part of the drawing plane of window, filling it with the background design.

window-refresh [Generic function]

Arguments: window

■ Clears the visible part of the drawing plane of window, and then replays all of the output records

in the visible part of the drawing plane.
CLIM 2.2 User Guide 335

19.5.2 The viewport and scrolling in CLIM

A window stream's viewport is the region of the drawing plane that is visible through the window. You can

change the viewport by scrolling or by reshaping the window. The viewport does not change if the window

is covered by another window (that is, the viewport is the region of the drawing plane that would be visible

if the window were stacked on top).

A window stream has an end of line action and an end of page action, which control what happens when

the cursor position moves out of the viewport (with-end-of-line-action and with-end-of-
page-action, respectively).

window-viewport [Generic function]

Arguments: window

■ Returns the window's current viewport, usually an object of type standard-bounding-
rectangle.

window-viewport-position [Generic function]

Arguments: window

■ Returns two values, the x and y coordinates of the top-left corner of the window's viewport.

note-viewport-position-changed [Generic function]

Arguments: frame sheet x y

■ This notification function is called whenever the position of the viewport associated with sheet
changes. Methods can be defined for particular frame and sheet classes. x and y are the new position,

as returned by window-viewport-position.

window-set-viewport-position [Generic function]

Arguments: window x y

■ Moves the upper left corner of the window's viewport. This is the simplest way to scroll a win-

dow. The function scroll-extent does much the same thing.

stream-end-of-line-action [Generic function]

Arguments: stream

■ Controls what happens when the cursor position moves horizontally out of the stream's view-

port (beyond the text margin). You can use this function with setf to change the end of line action

You can use with-end-of-line-action to temporarily change the end of line action.

stream-end-of-page-action [Generic function]

Arguments: stream

■ Controls what happens when the cursor position moves vertically out of the stream's viewport.

You can use this function with setf to change the end of page action

You can use with-end-of-page-action to temporarily change the end of page action.
336 CLIM 2.2 User Guide

with-end-of-line-action [Macro]

Arguments: (stream action) &body body

■ Temporarily changes the end of line action for stream for the duration of execution of body. The

end of line action controls what happens if the cursor position moves horizontally out of the viewport,

or if text output reaches the text-margin. (By default, the text margin is the width of the viewport,

so these are the same thing.)

■ The end of line action is one of:

:wrap

When doing text output, wrap the text around (that is, break the text line and start another line)

when the output reaches the text margin. When setting the cursor position, scroll the window hor-

izontally to keep the cursor position inside the viewport. This is the default.

:scroll

Scroll the window horizontally to keep the cursor position inside the viewport, then keep doing

output.

:allow

Ignore the text margin and just keep doing output.

with-end-of-page-action [Macro]

Arguments: (stream action) &body body

■ Temporarily changes the end of page action for stream for the duration of execution of body.

The end of page action controls what happens if the cursor moves vertically out of the viewport.

■ The end of page action is one of:

:scroll

Scroll the window vertically to keep the cursor position inside the viewport, then keep doing out-

put. This is the default.

:allow

Ignore the viewport and just keep doing output.

window-parent [Generic function]

Arguments: window

■ Returns the window that is the parent (superior) of window. This is identical to sheet-
parent, and is included for compatibility with CLIM 1.1.

window-children [Generic function]

Arguments: window

■ Returns a list of all of the windows that are children (inferiors) of window. This is identical to

sheet-children, and is included for compatibility with CLIM 1.1.

stream-set-input-focus [Function]

Arguments: stream

■ Selects stream as the sheet with the current input focus, and returns as a value the sheet previ-

ously holding the focus.
CLIM 2.2 User Guide 337

with-input-focus [Macro]

Arguments: (stream) &body body

■ Temporarily gives the keyboard input focus to the given window (which is most often an interac-

tor pane). By default, a frame will give the input focus to the frame-query-io pane.

The following functions are most usefully applied to the top level window of a frame. For example,

(clim:frame-top-level-sheet clim:*application-frame*)

window-expose [Generic function]

Arguments: window

■ Makes the window visible on the display server.

window-stack-on-bottom [Generic function]

Arguments: window

■ Puts the window underneath all other windows that it overlaps.

window-stack-on-top [Generic function]

Arguments: window

■ Puts the window on top of all other windows that it overlaps, so you can see all of it.

window-visibility [Generic function]

Arguments: stream

■ A predicate that returns true if the window is visible. You can use setf on window-
visibility to expose or de-expose the window.

The following operators can be applied to a window to determine its position and size.

window-inside-edges [Generic function]

Arguments: window

■ Returns four values, the coordinates of the left, top, right, and bottom inside edges of the window

window. The inside edges are, in effect, the edges within which all output takes places.

window-inside-size [Generic function]

Arguments: window

■ Returns the inside width and height of window as two values.

19.5.3 Operators for creating CLIM window streams

find-port [Function]

Arguments: &rest initargs &key (server-path *default-server-path*)
&allow-other-keys

■ Creates a port, a special object that acts as the root or parent of all CLIM windows and application

frames. In general, a port corresponds to a connection to a display server.
338 CLIM 2.2 User Guide

server-path is a list that specifies the server path. The first element of the list is the keyword

:motif. Then the keyword :display, whose value is an X display name and, usually, number that

identifies the X server to be used (as in the example just below).

■ Note: You should call find-port only at runtime, not at load time. This function captures infor-

mation about the screen currently in use, which will not be valid across boot sessions.

■ The usual idiom for creating a port on your own machine is (clim:find-port). If you are

using some sort of display server, you may need to do something more complex, such as

(clim:find-port :server-path '(:motif :display "vapor:0"))

find-frame-manager [Generic function]

Arguments: &rest options &key port
(server-path *default-server-path*) &allow-other-keys

■ Finds a frame manager that is on the port port, or creates a new one if none exists. If port is not

supplied and a new port must be created, server-path may be supplied for use by find-port.

options may include other initargs for the frame manager.

■ You will only rarely need to create a frame manager explicitly. Usually, you should just call

frame-manager on a frame object, such as

(clim:frame-manager (clim:pane-frame stream)).

open-window-stream [Function]

Arguments: &key parent left top right bottom width height
(foreground clim:+black+) (background clim:+white+)
text-style default-text-style (vertical-spacing 2)
(end-of-line-action :allow) (end-of-page-action :allow)
output-record (draw t) (record t)
(initial-cursor-visibility :off) text-margin
default-text-margin save-under input-buffer
(scroll-bars :vertical) borders label

■ A convenient composite function for creating a standalone CLIM window.

This function is not often used. Most often you will use windows that are created by an applica-

tion frame or by the menu and dialog functions.

Note that some of these keyword arguments are also available as pane options in define-
application-frame.

parent

The parent of the window. Its value can be a frame-manager or an application frame. It defaults to

what is returned by (find-frame-manager).

left

top

right

bottom

width

height

Used to specify the position and shape of the window within its parent, in device units. The default

is to fill the entire parent.

borders

Controls whether borders are drawn around the window (t or nil). The default is t.
CLIM 2.2 User Guide 339

default-text-margin

Text margin to use if stream-text-margin isn't set. This defaults to the width of the view-

port.

text-style

draw

record

end-of-line-action

end-of-page-action

background

foreground

text-margin

Initial values for the corresponding stream attributes.

initial-cursor-visibility

:off means make the cursor visible if the window is waiting for input. :on means make it vis-

ible now. The default is nil which means the cursor is never visible.

label

nil or a string label for the window. The default is nil for no label.

output-record

Specify this if you want a different output history mechanism than the default.

scroll-bars

One of nil, :vertical, :horizontal, or :both. Adds scroll bars to the window. The

default is :both.

vertical-spacing

Amount of extra space between text lines, in device units.

■ The remaining keyword arguments are internal and should not be used.
340 CLIM 2.2 User Guide

Chapter 20 The Silica windowing
substrate

This chapter describes details of the low-level implementation of CLIM. Application writers and users do

not typically make use of the functionality described in this chapter.

20.1 Overview of CLIM's windowing substrate

A central notion in organizing user interfaces is allocating screen regions to particular tasks and recursively

subdividing these regions into subregions. The windowing layer of CLIM defines an extensible framework

for constructing, using, and managing such hierarchies of interactive regions. This framework allows uni-

form treatment of the following things:

• Window objects like those in X Windows.

• Lightweight gadgets typical of toolkit layers, such as Motif.

• Structured graphics like output records and an application's presentation objects.

• Objects that act as Lisp handles for windows or gadgets implemented in a different language.

From the perspective of most CLIM users, CLIM's windowing layer plays the role of a window system.

However, CLIM actually uses the services of a window system platform to provide efficient windowing,

input, and output facilities.

The fundamental window abstraction defined by CLIM is called a sheet. A sheet can participate in a rela-

tionship called a windowing relationship. This relationship is one in which one sheet called the parent pro-

vides space to a number of other sheets called children. Support for establishing and maintaining this kind

of relationship is the essence of what window systems provide.

Programmers can manipulate unrooted hierarchies of sheets (those without a connection to any particular

display server). However, a sheet hierarchy must be attached to a display server to make it visible. Ports and

grafts provide the functionality for managing this capability. A port is a connection to a display service that

is responsible for managing host display server resources and for processing input events received from the

host display server. A graft is a special kind of sheet that represents a host window, typically a root window

(that is, a screen-level window). A sheet is attached to a display by making it a child of a graft, which rep-

resents an appropriate host window. The sheet will then appear to be a child of that host window. So, a sheet

is put onto a particular screen by making it a child of an appropriate graft and enabling it.
CLIM 2.2 User Guide 341

20.1.1 Basic properties of sheets

A sheet is the basic abstraction for implementing windows in CLIM.

sheet [Class]

■ The protocol class that corresponds to the output state for some kind of sheet. There is no single

advertised standard sheet class. If you want to create a new class that obeys the sheet protocol, it must

be a subclass of sheet

sheetp [Function]

Arguments: object

■ Returns t if object is a sheet, otherwise returns nil.

All sheets have the following basic properties:

A coordinate system
Provides the ability to refer to locations in a sheet's abstract plane.

A region
Defines an area within a sheet's coordinate system that indicates the area of interest within the

plane, that is, a clipping region for output and input. This typically corresponds to the visible

region of the sheet on the display.

A parent
A sheet that is the parent in a windowing relationship in which this sheet is a child.

Children
An ordered set of sheets that are each a child in a windowing relationship in which this sheet is a

parent. The ordering of the set corresponds to the stacking order of the sheets. Not all sheets have

children.

A transformation
Determines how points in this sheet's coordinate system are mapped into points in its parents.

An enabled flag
Indicates whether the sheet is currently actively participating in the windowing relationship with

its parent and siblings.

An event handler
A procedure invoked when the display server wishes to inform CLIM of external events.

An output state
A set of values used when CLIM causes graphical or textual output to appear on the display. This

state is often represented by a medium.

20.1.2 Basic sheet protocols

A sheet is a participant in a number of protocols. Every sheet must provide methods for the generic func-

tions that make up these protocols. These protocols are:

The windowing protocol
Describes the relationships between the sheet and its parent and children (and, by extension, all

of its ancestors and descendants).
342 CLIM 2.2 User Guide

The input protocol
Provides the event handler for a sheet. Events may be handled synchronously, asynchronously, or

not at all.

The output protocol
Provides graphical and textual output, and manages descriptive output state such as color, trans-

formation, and clipping.

The repaint protocol
Invoked by the event handler and by user programs to ensure that the output appearing on the dis-

play device appears as the program expects it to appear.

The notification protocol
Invoked by the event handler and user programs to ensure that CLIM's representation of window

system information is equivalent to the display server's.

These protocols may be handled directly by a sheet, queued for later processing by some other agent, or

passed on to a delegate sheet for further processing.

20.2 Sheet geometry

Every sheet has a region and a coordinate system. A sheet's region refers to its position and extent on the

display device, and is represented by some sort of a region object, frequently a rectangle. A sheet's coordi-

nate system is represented by a coordinate transformation that converts coordinates in its coordinate system

to coordinates in its parent's coordinate system.

20.2.1 Sheet geometry functions

sheet-transformation [Generic function]

Arguments: sheet

(setf sheet-transformation) [Generic function]

Arguments: transformation sheet

■ Returns a transformation that converts coordinates in sheet's coordinate system into coordinates

in its parent's coordinate system. Using setf on this accessor will modify the sheet's coordinate sys-

tem, including moving its region in its parent's coordinate system.

■ When the sheet's transformation is changed, note-sheet-transformation-changed is

called on sheet to notify the sheet of the change.

sheet-region [Generic function]

Arguments: sheet

(setf sheet-region) [Generic function]

Arguments: region sheet

■ Returns a region object that represents the set of points to which sheet refers. The region is in

the sheet's coordinate system. Using setf on this accessor modifies the sheet's region.

■ When the sheet's region is changed, note-sheet-region-region is called on sheet to

notify the sheet of the change.
CLIM 2.2 User Guide 343

note-sheet-region-changed [Generic function]

Arguments: sheet

note-sheet-transformation-changed [Generic function]

Arguments: sheet

■ These notification functions are invoked when the region or transformation of sheet has been

changed.

move-sheet [Generic function]

Arguments: sheet x y

■ Moves sheet to the new position (x,y). x and y are expressed in the coordinate system of

sheet's parent. Note that this is a low-level function which is not typically called by user code. The

function position-sheet-carefully can be used to move top-level sheets (i.e. windows)

and it is the function normally called in user code for that purpose.

■ move-sheet works by modifying sheet's transformation, and could be thought of as being

implemented as follows:

(defmethod move-sheet ((sheet clim:basic-sheet) x y)
 (let ((transform (clim:sheet-transformation sheet)))
 (multiple-value-bind (old-x old-y)
 (clim:transform-position transform 0 0)
 (setf (clim:sheet-transformation sheet)
 (clim:compose-translation-with-transformation
 transform (- x old-x) (- y old-y))))))

resize-sheet [Generic function]

Arguments: sheet width height

■ Resizes sheet to have a new width width and a new height height. width and height
are real numbers.

■ resize-sheet works by modifying sheet's region, and could be thought of as being imple-

mented as follows:

(defmethod resize-sheet ((sheet clim:basic-sheet) width height)
 (setf (clim:sheet-region sheet)
 (clim:make-bounding-rectangle 0 0 width height)))

move-and-resize-sheet [Generic function]

Arguments: sheet x y width height

■ Moves sheet to the new position (x,y), and changes its size to the new width width and the

new height height. x and y are expressed in the coordinate system of sheet's parent. width and

height are real numbers.

■ move-and-resize-sheet could be implemented as follows:

(defmethod move-and-resize-sheet ((sheet clim:basic-sheet) x y width height)
 (clim:move-sheet sheet x y)
 (clim:resize-sheet sheet width height))
344 CLIM 2.2 User Guide

map-sheet-position-to-parent [Generic function]

Arguments: sheet x y

■ Applies sheet's transformation to the point (x,y), returning the coordinates of that point in

sheet's parent's coordinate system.

map-sheet-position-to-child [Generic function]

Arguments: sheet x y

■ Applies the inverse of sheet's transformation to the point (x,y) (represented in sheet's parent's

coordinate system), returning the coordinates of that same point in sheet coordinate system.

map-sheet-rectangle*-to-parent [Generic function]

Arguments: sheet x1 y1 x2 y2

■ Applies sheet's transformation to the bounding rectangle specified by the corner points (x1,y1)

and (x2,y2), returning the bounding rectangle of the transformed region as four values, min-x,

min-y, max-x, and max-y. The arguments x1, y1, x2, and y1 are canonicalized in the same way

as for make-bounding-rectangle.

map-sheet-rectangle*-to-child [Generic function]

Arguments: sheet x1 y1 x2 y2

■ Applies the inverse of sheet's transformation to the bounding rectangle delimited by the corner

points (x1,y1) and (x2,y2) (represented in sheet's parent's coordinate system), returning the

bounding rectangle of the transformed region as four values, min-x, min-y, max-x, and max-y.

The arguments x1, y1, x2, and y1 are canonicalized in the same way as for make-bounding-
rectangle.

map-over-sheets-containing-position [Generic function]

Arguments: function sheet x y

■ Applies the function function to all of the children of the sheet sheet that contain the position

(x,y). x and y are expressed in sheet's coordinate system.

■ function is a function of one argument, the sheet; it has dynamic extent.

map-over-sheets-overlapping-region [Generic function]

Arguments: function sheet region

■ Applies the function function to all of the children of the sheet sheet that overlap the region

region. region is expressed in sheet's coordinate system.

■ function is a function of one argument, the sheet; it has dynamic extent.

child-containing-position [Generic function]

Arguments: sheet x y

■ Returns the topmost enabled direct child of sheet whose region contains the position (x,y). The

position is expressed in sheet's coordinate system.
CLIM 2.2 User Guide 345

20.3 Relationships between sheets

Sheets are arranged in a tree-shaped hierarchy. In general, a sheet has one parent (or no parent) and zero or

more children. A sheet may have zero or more siblings (that is, other sheets that share the same parent). In

order to describe the relationships between sheets, we need to define some terms.

Adopted
A sheet is said to be adopted if it has a parent. A sheet becomes the parent of another sheet by

adopting that sheet.

Disowned
A sheet is said to be disowned if it does not have a parent. A sheet ceases to be a child of another

sheet by being disowned.

Grafted
A sheet is said to be grafted when it is part of a sheet hierarchy whose highest ancestor is a graft.

In this case, the sheet may be visible on a particular window server.

Degrafted
A sheet is said to be degrafted when it is part of a sheet hierarchy that cannot possibly be visible

on a server, that is, the highest ancestor is not a graft.

Enabled
A sheet is said to be enabled when it is actively participating in the windowing relationship with

its parent. If a sheet is enabled and grafted, and all its ancestors are enabled (they are grafted by

definition), then the sheet will be visible if it occupies a portion of the graft region that isn't

clipped by its ancestors or ancestor's siblings.

Disabled
The opposite of enabled is disabled.

20.3.1 Sheet relationship functions

The generic functions in this section comprise the sheet protocol. All sheet objects must implement or

inherit methods for each of these generic functions.

sheet-parent [Generic function]

Arguments: sheet

■ Returns the parent of sheet, or nil if the sheet has no parent.

sheet-children [Generic function]

Arguments: sheet

■ Returns a list of sheets that are the children of sheet. Some sheet classes support only a single

child; in this case, the result of sheet-children will be a list of one element.

■ Do not modify the value returned by this function.

sheet-adopt-child [Generic function]

Arguments: sheet child

■ Adds the child sheet child to the set of children of sheet, and makes the sheet the child's

parent. If child already has a parent, an error will be signaled.
346 CLIM 2.2 User Guide

■ Some sheet classes support only a single child. For such sheets, attempting to adopt more than a

single child will cause an error to be signaled.

sheet-disown-child [Generic function]

Arguments: sheet child &key (errorp t)

■ Removes the child sheet child from the set of children of sheet, and makes the parent of the

child be nil. If child is not actually a child of sheet and errorp is t, then an error will be

signaled.

raise-sheet [Generic function]

Arguments: sheet

bury-sheet [Generic function]

Arguments: sheet

■ These functions reorder the children of a sheet by raising sheet to the top or burying it at the

bottom. Raising a sheet puts it at the beginning of the ordering; burying it puts it at the end. If sheets

overlap, the one that appears on top on the display device is earlier in the ordering than the one under-

neath.

■ This may change which parts of which sheets are visible on the display device.

reorder-sheets [Generic function]

Arguments: sheet new-ordering

■ Reorders the children of sheet to have the new ordering specified by new-ordering. new-
ordering is an ordered list of the child sheets; elements at the front of new-ordering are on top

of elements at the rear.

■ If new-ordering does not contain all of the children of sheet, then an error will be signaled.

If new-ordering contains a sheet that is not a child of sheet, then an error will be signaled.

sheet-enabled-p [Generic function]

Arguments: sheet

■ Returns t if the sheet is enabled by its parent, otherwise returns nil. Note that all of a sheet's

ancestors must be enabled before the sheet is viewable.

(setf sheet-enabled-p) [Generic function]

Arguments: enabled-p sheet

■ When enabled-p is t, this enables sheet. When enabled-p is nil, this disables the sheet.

■ Note that a sheet is not visible unless it and all of its ancestors are enabled.

map-over-sheets [Generic function]

Arguments: function sheet

■ Applies the function function to the sheet sheet, and then applies function to all of the

descendents (the children, the children's children, and so forth) of sheet.

■ function is a function of one argument, the sheet; it has dynamic extent.
CLIM 2.2 User Guide 347

20.4 Sheet input protocol

CLIM's windowing substrate provides an input architecture and standard functionality for notifying clients

of input that is distributed to their sheets. Input includes such events as the pointer entering and exiting

sheets, pointer motion (whose granularity is defined by performance limitations), and pointer button and

keyboard events. At this level, input is represented as event objects.

In addition to handling input event, a sheet is also responsible for providing other input services, such as

controlling the pointer's appearance, and polling for current pointer and keyboard state.

Input events can be broadly categorized into pointer events and keyboard events. By default, pointer

events are dispatched to the lowest sheet in the hierarchy whose region contains the location of the pointer.

Keyboard events are dispatched to the port's keyboard input focus; the accessor port-keyboard-
input-focus contains the event client that receives the port's keyboard events.

20.4.1 Input protocol functions

The following are the most useful functions in the sheet input protocol. These are what you need to be cog-

nizant of to write your own classes of gadgets.

sheet-event-queue [Generic function]

Arguments: sheet

■ Any sheet that can process events will have an event queue from which the events are gotten.

sheet-event-queue returns the object that acts as the event queue. The exact representation of

an event queue is explicitly unspecified.

handle-event [Generic function]

Arguments: sheet event

■ Handles the event event on behalf of the sheet sheet. For example, if you want to highlight a

sheet in response to an event that informs it that the pointer has entered its territory, there would be

a method to carry out the policy that specializes the appropriate sheet and event classes.

In addition to queue-event, the queued input protocol handles the following generic functions. The

client argument to these functions is typically a sheet.

When you implement your own gadget classes, you will probably write one or more handle-event
methods to manage such things as pointer button presses, pointer motion into the gadget, and so on.

20.5 Sheet output protocol

The output protocol is concerned with the appearance of displayed output on the window associated with a

sheet. The sheet output protocol is responsible for providing a means of doing output to a sheet, and for

delivering repaint requests to the sheet's client.

Each sheet retains some output state that logically describes how output is to be rendered on its window.

Such information as the foreground and background ink, line thickness, and transformation to be used dur-

ing drawing are provided by this state. This state may be stored in a medium associated with the sheet itself,

be derived from a parent, or may have some global default, depending on the sheet itself.
348 CLIM 2.2 User Guide

medium [Class]

■ The protocol class that corresponds to the output state for some kind of sheet. There is no single

advertised standard medium class. If you want to create a new class that obeys the medium protocol,

it must be a subclass of medium.

mediump [Function]

Arguments: object

■ Returns t if object is a medium, otherwise returns nil.

The following generic functions comprise the basic medium protocol. All mediums must implement

methods for these generic functions. Often, a sheet class that supports the output protocol will implement a

trampoline method that passes the operation on to sheet-medium of the sheet. All of these are described

in more detail in chapter 4 The CLIM drawing environment.

medium-foreground [Generic function]

Arguments: medium

(setf medium-foreground) [Generic function]

Arguments: design medium

■ Returns (and, with setf, sets) the current foreground ink for medium.

medium-background [Generic function]

Arguments: medium

(setf medium-background) [Generic function]

Arguments: design medium

■ Returns (and, with setf, sets) the current background ink for medium.

medium-ink [Generic function]

Arguments: medium

(setf medium-ink) [Generic function]

Arguments: design medium

■ Returns (and, with setf, sets) the current drawing ink for medium.

medium-transformation [Generic function]

Arguments: medium

(setf medium-transformation) [Generic function]

Arguments: transformation medium

■ Returns (and, with setf, sets) the user transformation that converts the coordinates presented to

the drawing functions by the programmer to medium's coordinate system. By default, it is the iden-

tity transformation.
CLIM 2.2 User Guide 349

medium-clipping-region [Generic function]

Arguments: medium

(setf medium-clipping-region) [Generic function]

Arguments: region medium

■ Returns (and, with setf, sets) the clipping region that encloses all output performed on

medium. It is returned and set in user coordinates. That is, to convert the user clipping region to

medium coordinates, it must be transformed by the value of medium-transformation.

medium-line-style [Generic function]

Arguments: medium

(setf medium-line-style) [Generic function]

Arguments: line-style medium

■ Returns (and, with setf, sets) the current line style for medium.

medium-text-style [Generic function]

Arguments: medium

(setf medium-text-style) [Generic function]

Arguments: text-style medium

■ Returns (and, with setf, sets) the current text style for medium of any textual output that may

be displayed on the window.

medium-default-text-style [Generic function]

Arguments: medium

(setf medium-default-text-style) [Generic function]

Arguments: text-style medium

■ Returns (and, with setf, sets) the default text style for output on medium.

medium-merged-text-style [Generic function]

Arguments: medium

■ Returns the actual text style used in rendering text on medium. It returns the result of

(clim:merge-text-styles (clim:medium-text-style medium)

 (clim:medium-default-text-style medium))

Thus, those components of the current text style that are not nil will replace the defaults from

medium's default text style. Unlike the preceding text style function, medium-merged-text-
style is read-only.
350 CLIM 2.2 User Guide

20.5.1 Associating a medium with a sheet

Before a sheet may be used for output, it must be associated with a medium. Some sheets are permanently

associated with media for output efficiency; for example, CLIM window stream sheets have a medium that

is permanently allocated to the window.

However, many kinds of sheets only perform output infrequently, and therefore do not need to be associ-

ated with a medium except when output is actually required. Sheets without a permanently associated

medium can be much more lightweight than they otherwise would be. For example, in a program that creates

a sheet for the purpose of displaying a border for another sheet, the border sheet receives output only when

the window's shape is changed.

To associate a sheet with a medium, the macro with-sheet-medium is used. Only sheets that are sub-

classes of sheet-with-medium-mixin may have a medium associated with them.

with-sheet-medium [Macro]

Arguments: (medium sheet) &body body

■ Within the body, the variable medium is bound to the sheet's medium. If the sheet does not have

a medium permanently allocated, one will be allocated and associated with the sheet for the duration

of the body, and then degrafted from the sheet and deallocated when the body has been exited. The

values of the last form of the body are returned as the values of with-sheet-medium.

■ This macro will signal a runtime error if sheet is not available for doing output.

sheet-medium [Generic function]

Arguments: sheet

■ Returns the medium associated with sheet. If sheet does not have a medium allocated to it,

sheet-medium returns nil.

■ This function will signal an error if sheet is not available for doing output.

medium-sheet [Generic function]

Arguments: medium

■ Returns the sheet associated with medium. If medium is not grafted to a sheet, medium-sheet
returns nil.

medium-drawable [Generic function]

Arguments: medium

■ Returns an implementation-dependent object that corresponds to the actual host window that will

be drawn on when medium is drawn on. If medium is not grafted to a sheet or the medium's sheet

is not currently mirrored on a display server, medium-drawable returns nil.

■ You can use this function to get a host window system object that can be manipulated using the

functions of the host window system. This might be done in order to explicitly trade of performance

against portability.

sheet-mirror [Generic function]

Arguments: sheet

■ Returns an implementation-dependent object that corresponds to the actual host window that will

be drawn on when you draw on sheet's medium.
CLIM 2.2 User Guide 351

20.6 Repainting protocol

CLIM's repainting protocol is the mechanism whereby a program keeps the display up-to-date, reflecting

the results of both synchronous and asynchronous events. The repaint mechanism may be invoked by user

programs each time through their top-level command loop. It may also be invoked directly or indirectly as

a result of events received from the display server host. For example, if a window is on display with another

window overlapping it, and the second window is buried, a ‘damage notification’ event may be sent by the

server; CLIM would cause a repaint to be executed for the newly-exposed region.

20.6.1 Repaint protocol functions

queue-repaint [Generic function]

Arguments: sheet repaint-event

■ Requests that the repaint event repaint-event be placed in the input queue of sheet. A pro-

gram that reads events out of the queue will be expected to call handle-event for the sheet using

the repaint region gotten from repaint-event.

handle-repaint [Generic function]

Arguments: sheet region

■ Implements repainting for a given sheet class. sheet is the sheet to repaint and region is the

region to repaint.

■ When you implement your own gadget classes, you will probably write a handle-repaint
method that draws the gadget.

repaint-sheet [Generic function]

Arguments: sheet region

■ Recursively causes repainting of sheet and any of its descendants that overlap the region

region.

20.7 Ports, grafts, and mirrored sheets

A sheet hierarchy must be attached to a display server so as to permit input and output. This is managed by

the use of ports and grafts.

A port is a logical connection to a display server. It is responsible for managing display output and server

resources, and for handling incoming input events. Typically, the programmer will create a single port that

will manage all of the windows on the display.

A graft is a special sheet that is directly connected to a display server. Typically, a graft is the CLIM sheet

that represents the root window of the display. There may be several grafts that are all attached to the same

root window; these grafts may have differing coordinate systems.

To display a sheet on a display, it must have a graft for an ancestor. In addition, the sheet and all of its

ancestors must be enabled, including the graft. In general, a sheet becomes grafted when it (or one of its

ancestors) is adopted by a graft.

A mirrored sheet is a special class of sheet that is attached directly to a window on a display server.

Grafts, for example, are always mirrored sheets. However, any sheet anywhere in a sheet hierarchy may be
352 CLIM 2.2 User Guide

a mirrored sheet. A mirrored sheet will usually contain a reference to a window system object, called a mir-

ror. For example, a mirrored sheet attached to an X11 server might have an X window system object stored

in one of its slots. Allowing mirrored sheets at any point in the hierarchy enables the adaptive toolkit facil-

ities.

Since not all sheets in the hierarchy have mirrors, there is no direct correspondence between the sheet

hierarchy and the mirror hierarchy. However, on those display servers that support hierarchical windows,

the hierarchies must be parallel. If a mirrored sheet is an ancestor of another mirrored sheet, their corre-

sponding mirrors must have a similar ancestor/descendant relationship.

CLIM interacts with mirrors when it must display output or process events. On output, the mirrored sheet

closest in ancestry to the sheet on which we wish to draw provides the mirror on which to draw. The mirror's

drawing clipping region is set up to be the intersection of the user's clipping region and the sheet's region

(both transformed to the appropriate coordinate system) for the duration of the output. On input, events are

delivered from mirrors to the sheet hierarchy. The CLIM port must determine which sheet shall receive

events based on information such as the location of the pointer.

In both of these cases, we must have a coordinate transformation that converts coordinates in the mirror

(so-called ‘native’ coordinates) into coordinates in the sheet and vice-versa.

20.7.1 Ports

A port is described with a server path. A server path is a list whose first element is a keyword that selects

the kind of port. The remainder of the server path is a list of alternating keywords and values whose inter-

pretation is port type-specific.

find-port [Function]

Arguments: &rest initargs &key (server-path *default-server-path*)
&allow-other-keys

■ Finds a port that provides a connection to the window server addressed by server-path. If no

such connection exists, a new connection will be constructed and returned. The initargs in

initargs will be passed to the function that constructed the new port.

default-server-path [Variable]

■ This special variable is used by find-port and its callers to default the choice of a display ser-

vice to locate. Binding this variable in a dynamic context will affect the defaulting of this argument

to these functions. This variable will be defaulted according to the environment. In Allegro CLIM,

CLIM will attempt to set this variable based on the value of the DISPLAY environment variable.

■ The initial value of *default-server-path* is (:motif).

Allegro CLIM supports only the following port type:

:motif [Server path]

Arguments: &key display application-name application-class

■ Given the server path, find-port finds a Motif port connected to the X display display.

■ In Allegro CLIM, if display is not supplied, the value come from the DISPLAY environment

variable.

■ application-name and application-class can be used to change the X name and

class of the CLIM from, respectively, clim and Clim. The values should be strings. It is rarely nec-

essary to change the name and class.
CLIM 2.2 User Guide 353

port [Server path]

Arguments: object

■ Returns the port associated with object. port is defined for all sheet classes (including grafts

and streams that support the CLIM graphics protocol), mediums, and application frames. For

degrafted sheets or other objects that aren't currently associated with particular ports, port will

return nil.

map-over-ports [Function]

Arguments: function

■ Invokes function on each existing port. function is a function of one argument, the port; it

has dynamic extent.

port-server-path [Generic function]

Arguments: port

■ Returns the server path associated with port.

port-name [Generic function]

Arguments: port

■ Returns an implementation-dependent string that is the name of the port. For example, a :motif
port might have a name of "summer:0.0".

port-type [Generic function]

Arguments: port

■ Returns the type of the port, that is, the first element of the server path spec.

restart-port [Generic function]

Arguments: port

■ In a multi-process Lisp, restart-port restarts the global input processing loop associated

with port. All pending input events are discarded. Server resources may or may not be released and

reallocated during or after this action. Note that port cannot be a port destroyed by destroy-
port, since such ports cannot be restarted.

destroy-port [Generic function]

Arguments: port

■ Destroys the connection with the window server represented by port. All sheet hierarchies that

are associated with port are forcibly degrafted by disowning the children of grafts on port using

sheet-disown-child. All server resources utilized by such hierarchies or by any graphics

objects on port are released as part of the connection shutdown. Once this function has been applied

to a port, the port is dead and cannot be used again for any purpose. In particular, it cannot be

restarted by restart-port.
354 CLIM 2.2 User Guide

20.7.2 Internal Interfaces for Native Coordinates

sheet-device-transformation [Generic function]

Arguments: sheet

■ Returns the transformation used by the graphics output routines when drawing on the mirror. The

object returned by this function is volatile, so programmers must not depend on the components of

the object remaining constant.

sheet-device-region [Generic function]

Arguments: sheet

■ Returns the actual clipping region to be used when drawing on the mirror. The object returned by

this function is volatile, so programmers must not depend on the components of the object remaining

constant.
CLIM 2.2 User Guide 355

[This page intentionally left blank.]
356 CLIM 2.2 User Guide

A

abort-gesture (condition) 328

abort-gesture-event (generic function) 329

abort-gestures (variable) 328

accelerator-gesture (class) 329

accelerator-gesture-event (generic function) 329

accelerator-gesture-numeric-argument (generic function) 329

accelerator-gestures (variable) 329

accept (function) 114

accept (presentation method) 137

accept-from-string (function) 115

accepting-values (macro) 262

accept-present-default (presentation method) 138

accept-values (pane type) 179

accept-values-command-button (function) 265

accept-values-pane (command table) 266

accept-values-pane-displayer (function) 267

activate-callback (generic function) 295

activate-gadget (generic function) 293

activation-gesture-p (function) 145

activation-gestures (variable) 145

active-gadget (class) 295

add-colors-to-palette (generic function, clim package) 86

add-command-to-command-table (function) 215

add-gesture-name (function) 165

add-input-editor-command (function) 310

add-keystroke-to-command-table (function) 223

add-menu-item-to-command-table (function) 219

add-output-record (generic function) 321

affine transformations

defined 66

allocate-pixmap (function) 41

allocate-space (generic function) 186

and (presentation type) 121

application (pane-types) 179

application frames

discussed 173

application-frame (variable) 198

application-frame-p (function) 176

application-pane (class) 182

apply-presentation-generic-function (macro) 135

area (class) 43

armed-callback (generic function) 293
CLIM 2.2 User Guide 357

B

background (pane option) 180

+background-ink+ (constant) 94

basic-gadget (class) 293

basic-pane (class) 182

beep (function) 333

+black+ (predefined color) 90

blank-area (presentation type) 161

+blue+ (predefined color) 90

boolean (presentation type) 116

borders (pane option) 180

bounded region

defined 43

bounding rectangle

defined 51

bounding-rectangle (class) 51

bounding-rectangle (generic function) 51

bounding-rectangle* (generic function) 51

bounding-rectangle-bottom (function) 52

bounding-rectangle-height (function) 52

bounding-rectangle-left (function) 52

bounding-rectangle-max-x (function) 52

bounding-rectangle-max-y (function) 52

bounding-rectangle-min-x (function) 52

bounding-rectangle-min-y (function) 52

bounding-rectangle-right (function) 52

bounding-rectangles 51

compared to rectangles 25

bounding-rectangle-size (function) 52

bounding-rectangle-top (function) 52

bounding-rectangle-width (function) 52

bug correction 15

bug reporting 14

bugs 14

bury-frame (generic function) 199

bury-sheet (generic function) 347

C

call-presentation-menu (function) 171

call-presentation-translator (function) 170

change-space-requirements (generic function) 186

character (presentation type) 117

check-box (class) 299

check-box-view (gadget view) 148
358 CLIM 2.2 User Guide

child-containing-position (generic function) 345

clear-output-record (generic function) 321

:clim-2 (feature) 17

:clim-2.0 (feature) 17

:clim-motif (feature) 17

clim-stream-pane (class) 182

clim-user (package) 17

:clipping-region (drawing option) 60

color-ihs (generic function) 87

color-rgb (generic function) 87

colors

dynamic 88

layered 88

predefined 90

command (presentation type 228

command-accessible-in-command-table-p (function) 216

command-arguments (function) 210

command-dispatchers (variable) 228

command-enabled (generic function) 227

command-line-name-for-command (function) 222

command-menu (pane type) 180

command-menu-item-options (function) 221

command-menu-item-type (function) 221

command-menu-item-value (function) 221

command-menu-pane (class) 182

command-name (function) 209

command-name (presentation type) 228

command-name-from-symbol (function) 213

command-not-accessible (condition) 217

command-not-present (condition) 217

command-or-form (presentation type) 228

command-present-in-command-table-p (function) 216

command-table (class) 213

command-table-already-exists (condition) 216

command-table-inherit-from (generic function) 213

command-table-name (generic function) 213

command-table-not-found (condition) 216

Comments and suggestions (section 1.5) 13

complete-from-generator (function) 142

complete-from-possibilities (function) 142

complete-input (function) 141

completing-from-suggestions (macro) 143

completion (presentation type) 118

completion-gestures (variable) 143

possibilities-gestures (variable) 144

complex (presentation type) 117
CLIM 2.2 User Guide 359

compose-in (generic function) 100

compose-out (generic function) 101

compose-over (generic function) 100

compose-rotation-with-transformation (generic function) 71

compose-scaling-with-transformation (generic function) 71

compose-space (generic function) 186

compose-transformations (generic function) 70

compose-transformation-with-rotation (generic function) 71

compose-transformation-with-scaling (generic function) 71

compose-transformation-with-translation (generic function) 71

compose-translation-with-transformation (generic function) 70

contrasting-dash-patterns-limit (function) 65

contrasting-inks-limit (function) 87

convert-ihs-to-rgb (function, clim-utitils package) 88

convert-rgb-to-ihs (function, clim-utils package) 88

copy-area (generic function) 41

copy-from-pixmap (function) 40

copy-textual-output-history (function) 324

copy-to-pixmap (function) 40

cursor-active (generic function) 330

cursor-focus (generic function) 331

cursor-position (generic function) 330

cursors

indicating a garbage collection 24

cursor-set-position (generic function) 330

cursor-sheet (generic function) 330

cursor-state (generic function) 330

cursor-visibility (generic function) 331

+cyan+ (predefined color) 90

D

deactivate-gadget (generic function) 294

deallocate-pixmap (function) 41

default-describe-presentation-type (function) 137

default-frame-top-level (generic function) 203

default-server-path (variable) 353

default-text-style (variable) 77

default-view (pane option) 181

define-application-frame

pane-options 180

pane-types 179

define-application-frame (macro) 173

define-border-type (macro) 253

define-command (macro) 210

define-command-table (macro) 214
360 CLIM 2.2 User Guide

define-default-presentation-method (macro) 134

define-drag-and-drop-translator (macro) 160

define-gesture-name (macro) 166

define-presentation-action (macro) 158

define-presentation-generic-function (macro) 134

define-presentation-method (macro) 134

define-presentation-to-command-translator (macro) 157

define-presentation-translator (macro) 154

define-presentation-type (macro) 132

define-presentation-type-abbreviation (macro) 135

delete-gesture-name (function) 166

delete-output-record (generic function) 321

delimiter-gesture-p (function) 146

delimiter-gestures (variable) 145

describe-presentation-type (function) 151

describe-presentation-type (presentation method) 137

destroy-frame (generic function) 199

destroy-port (generic function) 354

device-color (class, clim-utils package) 87

device-color-color (generic function, clim-utils package) 88

device-color-palette (generic function, clim-utils package) 88

device-color-pixel (generic function, clim-utils package) 87

device-event (class) 167

disarmed-callback (generic function) 293

display-after-commands (pane option) 181

display-command-menu (function) 218

display-command-table-menu (function) 217

displayed-output-record (class) 318

displayed-output-record-p (function) 318

display-function (pane option) 181

display-string (pane option) 181

do-command-table-inheritance (macro) 214

document-presentation-translator (function) 171

dolist-noting-progress (macro) 335

dotimes-noting-progress (macro) 335

double-click events and gestures 164

drag-callback (generic function) 295

dragging-output (macro) 288

drag-output-record (function) 287

draw (pane option) 181

draw-arrow (function) 32

draw-arrow* (function) 32

draw-bezier-curve (function) 36

draw-bezier-curve* (function) 36

draw-circle (function) 35

draw-circle* (function) 36
CLIM 2.2 User Guide 361

draw-design (generic function) 101

draw-ellipse (function) 34

draw-ellipse* (function) 35

drawing

special effects 102

specialized (drawing patterns etc.) 102

drawing environment 57

draw-line (function) 31

draw-line* (function) 31

draw-lines (function) 32

draw-lines* (function) 32

draw-oval (function) 36

draw-oval* (function) 36

draw-pattern* (function) 97

draw-pixmap (function) 41

draw-pixmap* (function) 41

draw-point (function) 30

draw-point* (function) 31

draw-points (function) 31

draw-points* (function) 31

draw-polygon (function) 32

draw-polygon* (function) 33

draw-rectangle (function) 33

draw-rectangle* (function) 33

draw-rectangles (function) 33

draw-rectangles* (function) 34

draw-standard-menu (function) 261

draw-text (function) 36

draw-text* (function) 37

dribble (function) 15

dribble-bug (function, excl package) 14, 15

dynamic colors 88

(setf dynamic-color-color) (generic function) 89

dynamic-color-color (generic function) 88

E

editor keybindings 309

ellipse

defined 53

ellipse (class) 53

ellipse-center-point (generic function) 55

ellipse-center-point* (generic function) 55

ellipse-end-angle (generic function) 55

ellipse-radii (generic function) 55

ellipse-start-angle (generic function) 55
362 CLIM 2.2 User Guide

elliptical arc

defined 53

elliptical-arc (class) 53

end-of-line-action (pane option) 181

end-of-page-action (pane option) 181

erase-input-buffer (generic function) 314

erase-output-record (generic function) 321

even-scaling-transformation-p (generic function) 69

event (class) 167

event-matches-gesture-name-p (function) 166

event-modifier-state (generic function) 167

eventp (function) 167

event-sheet (generic function) 167

event-timestamp (generic function) 167

event-type (generic function) 167

+everywhere+ 9constant) 43

execute-frame-command (generic function) 227

expand-presentation-type-abbreviation (function) 135

expand-presentation-type-abbreviation-1 (function) 135

expression (presentation type) 122

extended-input-stream-p (generic function) 327

extended-output-stream-p (generic function) 329

F

face (component of a text style) 77

family (component of a text style) 77

features (on *features* list) in CLIM 17

file selection 334

+fill+ (constant) 187

:filled (keyword argument to drawing functions) 62

filling-output (macro) 249

find-applicable-translators (function) 169

find-application-frame (function) 178

find-closest-matching-color (generic function, clim package) 86

find-command-from-command-line-name (function) 222

find-command-table (function) 213

find-frame-manager (generic function) 339

find-innermost-applicable-presentation (function) 171

find-keystroke-item (function) 224

find-menu-item (function) 221

find-named-color (function) 91

find-pane-named (generic function) 201

find-port (function) 338, 353

find-presentation-translators (function) 169

fixing bugs 15
CLIM 2.2 User Guide 363

+flipping-ink+ (constant) 95

float (presentation type) 117

foreground (pane option) 180

+foreground-ink+ (constant) 94

form (presentation type) 123

Format of the manual (section 1.3) 11

format-graph-from-root (function) 247

format-graph-from-roots (function) 244

format-items (function) 237

formatted output 231

format-textual-list (function) 247

formatting-cell (macro) 234

formatting-column (macro) 233

formatting-item-list (macro) 236

formatting-row (macro) 233

formatting-table (macro) 232

frame-all-layouts (generic function) 205

frame-command-table (generic function) 201

(setf frame-current-layout) (generic function) 205

frame-current-layout (generic function) 200, 204

frame-current-panes (generic function) 201

frame-document-highlighted-presentation (generic function, clim package) 202

frame-error-output (generic function) 200

frame-exit (condition) 204

frame-exit (generic function) 204

tracing 204

frame-exit (generic-function)

called by window-manager 204

frame-exit-frame (generic function) 204

frame-find-innermost-applicable-presentation (generic function) 201

frame-input-context-button-press-handler (generic function) 201

frame-maintain-presentation-histories (generic function) 202

frame-manager-dialog-view (generic function) 149

frame-manager-palette (generic function, clim package) 85

frame-name (generic function) 199

frame-palette (generic function) 86

frame-palette (generic function, clim package) 85

frame-panes (generic function) 201

frame-pointer-documentation-output (generic function) 200

frame-pretty-name (generic function) 199

frame-query-io (generic function) 200

frame-replay (generic function) 204

frame-standard-input (generic function) 199

frame-standard-output (generic function) 200

frame-state (generic function) 199

frame-top-level-sheet (generic function) 202
364 CLIM 2.2 User Guide

funcall-presentation-generic-function (macro) 134

G

gadget (class) 292

gadget-active-p (generic function) 294

gadget-client (generic function) 293

gadget-columns (generic function, clim package) 296

gadget-current-selection (function) 304

gadget-dialog-view (class) 147, 150

+gadget-dialog-view+ (constant) 151

gadget-id (generic function) 293

gadget-label (generic function) 296

gadget-max-value (generic function) 296

gadget-menu-view (class) 148, 150

+gadget-menu-view+ (constant) 151

gadget-min-value (generic function) 296

gadget-orientation (generic function) 295

gadgetp (function) 293

gadget-rows (generic function, clim package) 296

gadget-value (generic function) 294

gadget-view (class) 147, 150

+gadget-view+ (constant) 150

gc cursor (how to get one) 24

gestures

pointer 163

get-frame-pane (generic function) 201

getting help 14

global-command-table (command table) 216

graphs 242

+green+ (predefined color) 90

H

handle-event (generic function) 348

handle-repaint (generic function) 352

height (pane option) 180

help-gestures (variable) 144

highlight-applicable-presentation (function) 172

highlight-presentation (presentation method) 139

horizontally (macro) 187

how to report bugs 14

hyper key 25
CLIM 2.2 User Guide 365

I

+identity-transformation+ (constant) 68

identity-transformation-p (generic function) 69

immediate-rescan (generic function) 314

incremental-redisplay (pane option) 181

indenting-output (function) 251

initial-cursor-visibility (pane option) 181

:ink (drawing option) 60

input editor

keybindings 309

input-context (variable) 113

input-context-type (function) 113

input-editing-stream-p (function) 313

input-editor-format (function) 313

input-not-of-required-type (condition) 140

input-not-of-required-type (function) 140

integer (presentation type) 117

interactor (pane type) 179

interactor-pane (class) 182

invertible-transformation-p (generic function) 69

invert-transformation (generic function) 72

invoke-with-drawing-options (generic function) 60

invoke-with-new-output-record (generic function) 319

K

keybindings (in input editor) 309

keyboard-event (class) 167

keyboard-event-character (generic function) 168

keyboard-event-key-name (generic function) 168

key-press-event (class) 168

key-release-event (class) 168

keyword (presentation type) 116

L

label (pane option) 181

labelled-gadget-mixin (class) 296

labelling (macro) 188

layered colors 88

layered-color (generic function) 90

line

defined 48

line (class) 48

line style
366 CLIM 2.2 User Guide

defined 62

:line-cap-shape (drawing option) 64

:line-dashes (drawing option) 64

line-end-point (generic function) 48

line-end-point* (generic function) 49

:line-joint-shape (drawing option) 64

line-start-point (generic function) 48

line-start-point* (generic function) 49

:line-style (drawing option) 61

line-style-cap-shape (generic function) 63

line-style-dashes (generic function) 63

line-style-joint-shape (generic function) 63

line-style-thickness (generic function) 63

line-style-unit (generic function) 63

:line-thickness (drawing option) 64

:line-unit (drawing option) 63

list-pane (class) 300

list-pane-view (gadget view) 148

lookup-keystroke-command-item (function) 224

lookup-keystroke-item (function) 224

M

+magenta+ (predefined color) 90

make-3-point-transformation (function) 68

make-3-point-transformation* (function) 68

make-application-frame (function) 177

make-bounding-rectangle (function) 51

make-clim-application-pane (function) 184

make-clim-interactor-pane (function) 183

make-clim-stream-pane (function) 183

make-command-table (function) 214

make-contrasting-dash-patterns (function) 65

make-contrasting-inks (function) 87

make-design-from-output-record (function) 102

make-device-color (generic function, clim-utils package) 88

make-dynamic-color (generic function) 88

make-ellipse (function) 54

make-ellipse* (function) 54

make-elliptical-arc (function) 54

make-elliptical-arc* (function) 54

make-flipping-ink (function) 94

make-gray-color (function) 87

make-ihs-color (function) 86

make-layered-color-set (function) 90

make-line (function) 48
CLIM 2.2 User Guide 367

make-line* (function) 48

make-line-style (function) 62

make-modifier-state (function) 166

make-opacity (function) 100

make-palette (generic function) 85

make-pane (function) 297

make-pattern (function) 95

make-pattern-from-bitmap-file (function) 98

make-pattern-from-pixmap (generic function, clim package) 96

make-point (function) 46

make-polygon (function) 47

make-polygon* (function) 47

make-polyline (function) 47

make-polyline* (function) 47

make-presentation-type-specifier (function) 136

make-rectangle (function) 49

make-rectangle* (function) 49

make-rectangular-tile (function) 97

make-reflection-transformation (function) 67

make-reflection-transformation* (function) 67

make-rgb-color (function) 86

make-rotation-transformation (function) 67

make-rotation-transformation* (function) 67

make-scaling-transformation (function) 67

make-scaling-transformation* (function) 67

make-space-requirement (function) 184

make-stencil (function) 97

make-text-style (generic function) 80

make-transformation (function) 68

make-translation-transformation (function) 67

map-over-command-table-commands (function) 216

map-over-command-table-keystrokes (function) 224

map-over-command-table-menu-items (function) 220

map-over-command-table-names (function) 222

map-over-frames (function) 198

map-over-output-records (function) 321

map-over-output-records-containing-position (generic function) 322

map-over-output-records-overlapping-region (generic function) 322

map-over-polygon-coordinates (generic function) 48

map-over-polygon-segments (generic function) 48

map-over-ports (generic function) 354

map-over-region-set-regions (generic function) 45

map-over-sheets (generic function) 347

map-over-sheets-containing-position (generic function) 345

map-over-sheets-overlapping-region (generic function) 345

map-sheet-position-to-child (generic function) 345
368 CLIM 2.2 User Guide

map-sheet-position-to-parent (generic function) 345

map-sheet-rectangle*-to-child (generic function) 345

map-sheet-rectangle*-to-parent (generic function) 345

max-height (pane option) 180

max-width (pane option) 180

medium (class) 349

(setf medium-background) (generic function) 349

medium-background (generic function) 58, 349

(setf medium-clipping-region) (generic function) 350

medium-clipping-region (generic function) 58, 350

medium-copy-area (generic function) 38

(setf medium-default-text-style) (generic function) 350

medium-default-text-style (generic function) 59, 350

medium-drawable (generic function) 351

medium-draw-ellipse* (generic function) 39

medium-draw-line* (generic function) 38

medium-draw-lines* (generic function) 38

medium-draw-point* (generic function) 38

medium-draw-points* (generic function) 38

medium-draw-polygon* (generic function) 39

medium-draw-rectangle* (generic function) 38

medium-draw-rectangles* (generic function) 39

medium-draw-text* (generic function) 39

(setf medium-foreground) (generic function) 349

medium-foreground (generic function) 58, 349

(setf medium-ink) (generic function) 349

medium-ink (generic function) 58, 349

(setf medium-line-style) (generic function) 350

medium-line-style (generic function) 59, 350

medium-merged-text-style (generic function) 350

mediump (function) 349

medium-sheet (generic function) 351

(setf medium-text-style) (generic function) 350

medium-text-style (generic function) 59, 350

(setf medium-transformation) (generic function) 349

medium-transformation (generic function) 58, 349

member-alist (presentation type abbreviation) 119

member-sequence (presentation type) 119

menu-bar (pane type) 180

menu-choose (function) 257

menu-choose-command-from-command-table (function) 219

menu-choose-from-drawer (function) 260

merge-text-styles (generic function) 79

min-height (pane option) 180

min-width (pane option) 180

modifier-state-matches-gesture-name-p (function) 166
CLIM 2.2 User Guide 369

:motif (server path) 353

move-and-resize-sheet (generic function) 344

move-sheet (generic function) 344

N

new-page (function that is not supported) 256

notation in the manual 11

note-frame-deiconified (generic function) 202

note-frame-iconified (generic function) 202

note-gadget-activated (generic function) 294

note-gadget-deactivated (generic function) 294

note-progress (function) 335

note-sheet-region-changed (generic function) 344

note-sheet-transformation-changed (generic function) 344

note-viewport-position-changed (generic function) 336

notify-user (generic function) 333

noting-progress (macro) 334

+nowhere+ (constant) 44

null (presentation type) 116

null-or-type (presentation type abbreviation) 122

null-presentation (constant) 161

number (presentation type) 117

numeric-argument-marker (variable) 227

O

opacity-value (generic function) 100

open-window-stream (function) 339

option-pane (class) 301

option-pane-view (gadget view) 148

or (presentation type) 121

oriented-gadget-mixin (class) 295

outlining (macro) 188

output

formatted 231

output recording (defined) 317

output-record (class) 318

output-record (pane option) 181

output-record-children (generic function) 320

output-record-count (generic function) 321

output-recording-stream-p (function) 323

output-record-p (function) 318

output-record-parent (generic function) 320
370 CLIM 2.2 User Guide

P

palette (class) 84

palette (data structure holding colors) 84

palette-color-p (generic function) 84

palette-full (condition, clim package) 85

palette-full-color (generic function, clim package) 85

palette-full-palette (generic function, clim package0 85

palette-mutable-p (generic function) 84

palettep (function) 84

pane (class) 182

pane-frame (generic function) 182

pane-options for define-application-frame 180

panep (function) 182

pane-types (for define-application-frame) 179

pane-viewport (generic function) 189

pane-viewport-region (generic function) 189

parse-text-style (generic function) 79

partial-command-p (function) 210

patches 15

Patches (section 1.7) 15

patching bugs 15

path (class) 43

pathname (presentation type) 118

pattern-array (generic function, clim package) 96

pattern-designs (generic function, clim package) 96

pattern-height (function) 96

pattern-width (function) 96

pixmap-depth (generic function) 42

pixmap-height (generic function) 41

pixmap-width (generic function) 41

point

defined 46

point (class) 43, 46

pointer gestures 163

pointer-boundary-event (class) 169

pointer-boundary-event-kind (generic function) 169

pointer-button-event (class) 168

pointer-button-press-event (class) 168

pointer-button-release-event (class) 169

pointer-button-state (generic function) 283

pointer-cursor (generic function) 284

pointer-documentation (pane type) 180

pointer-documentation-output (variable) 200

pointer-documentation-pane (class) 183

pointer-documentation-view (class) 148
CLIM 2.2 User Guide 371

pointer-enter-event (class) 169

pointer-event (class) 168

pointer-event-button (generic function) 168

pointer-event-x (generic function) 168

pointer-event-y (generic function) 168

pointer-exit-event (class) 169

pointer-input-rectangle (function) 289

pointer-input-rectangle* (function) 288

pointer-motion-event (class) 169

pointer-native-position (generic function) 284

pointer-place-rubber-band-line* (function) 288

pointer-position (generic function) 283

pointer-set-native-position (generic function) 284

pointer-set-position (generic function) 284

pointer-sheet (generic function) 283

point-position (generic function) 46

point-x (generic function) 46

point-y (generic function) 46

polygon

defined 46

polygon 9class) 47

polygon-points (generic function) 48

polyline

defined 46

polyline (class) 47

polyline-closed (generic function) 47

port 354

port (generic function) 354

port-default-palette (generic function) 85, 86

port-modifier-state (generic function) 283

port-name (generic function) 354

port-pointer (generic function) 283

port-server-path (generic function) 354

port-type (generic function) 354

predefined colors

list 90

why there are so few 90

present (function) 110

present (presentation method) 136

presentation (class) 111

presentation-matches-context-type (function) 170

presentation-object (generic function) 111

presentationp (function) 111

presentation-refined-position-test (presentation method) 139

presentation-replace-input (generic function) 144

presentations
372 CLIM 2.2 User Guide

discussed 105

presentation-subtypep (function) 152

presentation-subtypep (presentation method) 138

presentation-type (generic function) 112

presentation-type-of (function) 151

presentation-typep (function) 151

presentation-typep (presentation method) 138

presentation-type-specifier-p (presentation method) 139

present-to-string (function) 111

print-menu-item (function) 261

push-button (class) 297

push-button-show-as-default (generic function) 298

push-button-view (class) 297

push-button-view (gadget view) 148

+push-button-view+ (constant) 297

Q

queue-repaint (generic function) 352

queue-rescan (generic function) 314

R

radio-box (class) 298

radio-box-view (gadget view) 148

raise-frame (generic function) 199

raise-sheet (generic function) 347

range-gadget-mixin (class) 296

ratio (presentation type) 117

rational (presentation type) 117

read-bitmap-file (function) 98

read-command (function) 226

read-command-using-keystrokes (function) 225

read-frame-command (generic function) 227

read-gesture (function) 327

read-token (function) 139

real (presentation type) 117

recolor-dynamic-color (generic function) 89

recompute-extent-for-changed-child (generic function) 323

recompute-extent-for-new-child (generic function) 322

record (pane option) 181

rectangle 49

defined 49

rectangle (class) 49

rectangle-edges* (generic function) 50

rectangle-height (function) 50
CLIM 2.2 User Guide 373

rectangle-max-point (generic function) 50

rectangle-max-x (function) 50

rectangle-max-y (function) 50

rectangle-min-point (generic function) 49

rectangle-min-x (function) 50

rectangle-min-y (function) 50

rectangles

compared to bounding-rectangles 25

rectangle-size (function) 50

rectangle-width (function) 50

rectilinear-transformation-p (generic function) 69

+red+ (predefined color) 90

redisplay (function) 276

redisplay-frame-pane (generic function) 204

redisplay-frame-panes (generic function) 204

redisplay-output-record (generic function) 276

redraw-input-buffer (generic function) 315

reflection (a transformation)

defined 66

reflection-transformation-p (generic function) 69

region

defined 43

region (class) 43

region-contains-position-p (generic function) 44

region-contains-region-p (generic function) 44

region-difference (generic function) 45

region-equal (generic function) 44

region-intersection (generic function) 45

region-intersects-region-p (generic function) 44

region-set (class) 45

region-set-function (generic function) 45

region-set-regions (generic function) 45

region-union (generic function) 44

remove-colors-from-palette (generic function, clim package) 86

remove-command-from-command-table (function) 215

remove-keystroke-from-command-table (function) 223

remove-menu-item-from-command-table (function) 220

reorder-sheets (generic function) 347

repaint-sheet (generic function) 352

replace-input (generic function) 144

replay (function) 319

replay-output-record (generic function) 319

reporting bugs 14

Reporting bugs (section 1.6) 14

rescan-if-necessary (generic function) 314

reset-scan-pointer (generic function) 314
374 CLIM 2.2 User Guide

resize-sheet (generic function) 344

restart-port (generic function) 354

rigid-transformation-p (generic function) 69

rotation (a transformation)

defined 66

row-column-gadget-mixin (class, clim package) 295

r-tree-output-history (class) 325

run-frame-top-level (generic function) 202

S

scaling transformation

defined 66

scaling-transformation-p (generic function) 69

scroll-bar (class) 302

scroll-bars (pane option) 180

scroll-bar-size (generic function) 190

scroll-extent (generic function) 189

scrolling (macro) 188

select-file (generic function) 334

sequence (presentation type) 121

sequence-enumerated (presentation type) 121

set-highlighted-presentation (function) 172

sheet-adopt-child (generic function) 346

sheet-children (generic function) 346

sheet-device-region (generic function) 355

sheet-device-transformation (generic function) 355

sheet-disown-child (generic function) 347

(setf sheet-enabled-p) (generic function) 347

sheet-enabled-p (generic function) 347

sheet-event-queue (generic function) 348

sheet-medium (generic function) 351

sheet-mirror (generic function) 351

sheetp (function) 342

sheet-parent (generic function) 346

sheet-pointer-cursor (generic function) 285

(setf sheet-region) (generic function) 343

sheet-region (generic function) 343

(setf sheet-transformation) (generic function) 343

sheet-transformation (generic function) 343

simple-parse-error (condition) 140

simple-parse-error (function) 140

size (component of a text style) 77

slider (class) 302

slider-view (gadget view) 148

space-requirement+ (function) 185
CLIM 2.2 User Guide 375

space-requirement+* (function) 185

space-requirement-combine (function) 185

space-requirement-components (generic function) 185

space-requirement-height (generic function) 185

space-requirement-max-height (generic function) 185

space-requirement-max-width (generic function) 185

space-requirement-min-height (generic function) 185

space-requirement-min-width (generic function) 185

space-requirement-width (generic function) 185

spacing (macro) 188

standard-activation-gestures (variable) 145

standard-application-frame (class) 176

standard-bounding-rectangle (class) 51

standard-ellipse (class) 53

standard-elliptical-arc (class) 53

standard-line (class) 48

standard-point (class) 46

standard-polygon (class) 47

standard-polyline (class) 47

standard-presentation (class) 111

standard-rectangle (class) 49

standard-sequence-output-history (class) 325

standard-sequence-output-record (class) 324

standard-tree-output-history (class) 325

standard-tree-output-record (class) 325

stream-add-output-record (generic function) 324

stream-baseline (generic function) 331

stream-character-width (generic function) 331

stream-current-output-record (generic function) 324

stream-cursor-position (generic function) 330

stream-default-view (generic function) 149

stream-drawing-p (generic function) 324

stream-end-of-line-action (generic function) 336

stream-end-of-page-action (generic function) 336

stream-increment-cursor-position (generic function) 330

stream-input-wait (generic function) 328

(setf stream-insertion-pointer) (generic function) 313

stream-insertion-pointer (generic function) 313

stream-line-height (generic function) 331

stream-output-history (generic function) 323

stream-pointer-position (generic function) 284

stream-recording-p (generic function) 324

stream-replay (generic function) 324

stream-rescanning-p (generic function) 314

(setf stream-scan-pointer) (generic function) 314

stream-scan-pointer (generic function) 314
376 CLIM 2.2 User Guide

stream-set-cursor-position (generic function) 330

stream-set-input-focus (function) 337

stream-set-pointer-position (generic function) 285

stream-string-width (generic function) 333

stream-text-cursor (generic function) 330

stream-text-margin (generic function) 331

stream-vertical-spacing (generic function) 331

string (presentation type) 118

subset (presentation type abbreviation) 120

subset-alist (presentation type abbreviation) 120

subset-completion (presentation type) 120

subset-sequence (presentation type abbreviation) 120

suggest (function) 143

super key 25

surrounding-output-with-border (macro) 252

symbol (presentation type) 116

T

t (presentation type) 116

tabling (macro) 188

test-frame (example frame)

how to create 20

test-pane (example pane)

how to create 20

test-presentation-translator (function) 170

text style

defined 77

face 77

family 77

size 77

text-editor (class) 304

text-editor-view (gadget view) 148

:text-face (text style option) 78

:text-family (text style option) 78

text-field (class) 304

text-field-view (gadget view) 148

text-size (generic function) 332

:text-size (text style option) 78

:text-style (drawing option) 61

text-style (pane option) 180

text-style-ascent (generic function) 79

text-style-components (generic function) 79

text-style-descent (generic function) 80

text-style-face (generic function) 79

text-style-family (generic function) 79
CLIM 2.2 User Guide 377

text-style-fixed-width-p (generic function) 80

text-style-height (generic function) 80

(setf text-style-mapping) (generic function) 80

text-style-mapping (generic function) 80

text-style-size (generic function) 79

text-style-width (generic function) 80

textual-dialog-view (class) 147, 150

+textual-dialog-view+ (constant) 150

textual-menu-view (class) 147, 150

+textual-menu-view+ (constant) 150

textual-view (class) 147, 150

+textual-view+ (constant) 150

throw-highlighted-presentation (function) 171

title (pane type) 180

title-pane (class) 183

toggle-button (class) 298

toggle-button-view (gadget view) 148

token-or-type (presentation type abbreviation) 122

tracking-pointer (macro) 285

transformation (class) 68

:transformation (drawing option) 61

transformation-equal (generic function) 69

transform-distance (generic function) 75

transform-position (generic function) 75

transform-rectangle* (generic function) 76

transform-region (generic function) 75

translation (a transformation)

defined 66

translation-transformation-p (generic function) 69

+transparent-ink+ (constant) 100

tree-recompute-extent (generic function) 323

type-or-string (presentation type abbreviation) 122

U

unbounded region

defined 43

unhighlight-highlighted-presentation (function) 172

unread-gesture (function) 328

unsupplied-argument-marker (variable) 227

untransform-distance (generic function) 75

untransform-position (generic function) 75

untransform-rectangle* (generic function) 76

untransform-region (generic function) 75

updating-output (macro) 275

use-clim-gc-cursor (variable, xm-silica package) 24
378 CLIM 2.2 User Guide

use-closest-color (variable, clim package) 85

use-other-color (named restart, clim package) 86

user-command-table (command table) 216

V

value-changed-callback (generic function) 294

value-gadget (class) 294

vertically (macro) 187

vertical-spacing (pane option) 182

views 147

W

+white+ (predefined color) 90

width (pane option) 180

window-children (generic function) 337

window-clear (generic function) 335

window-erase-viewport (generic function) 335

window-expose (generic function) 338

window-inside-edges (generic function) 338

window-inside-size (generic function) 338

window-manager

close or exit option -- calls frame-exit 204

window-parent (generic function) 337

window-refresh (generic function) 335

window-set-viewport-position (generic function) 336

window-stack-on-bottom (generic function) 338

window-stack-on-top (generic function) 338

window-viewport (generic function) 336

window-viewport-position (generic function) 336

window-visibility (generic function) 338

with-accept-help (macro) 146

with-activation-gestures (macro) 145

with-aligned-prompts (macro, clim package) 252

with-application-frame (macro) 198

with-command-table-keystrokes (macro) 225

with-delayed-recoloring (macro) 89

with-delimiter-gestures (macro) 145

with-drawing-options (macro) 60

with-end-of-line-action (macro) 337

with-end-of-page-action (macro) 337

with-first-quadrant-coordinates (macro) 74

with-input-context (macro) 113

with-input-editing (macro) 312

with-input-editor-typeout (macro) 313
CLIM 2.2 User Guide 379

with-input-focus (macro) 338

with-local-coordinates (macro) 74

with-menu (macro) 261

with-new-output-record (macro) 318

with-output-as-gadget (macro) 305

with-output-as-presentation (macro) 109

with-output-recording-options (macro) 319

with-output-to-output-record (macro) 319

with-output-to-pixmap (macro) 42

with-output-to-postscript-stream (macro) 255

with-presentation-type-decoded (macro) 152

with-presentation-type-options (macro) 152

with-presentation-type-parameters (macro) 152

with-radio-box (macro) 300

with-room-for-graphics (macro) 73

with-rotation (macro) 72

with-scaling (macro) 73

with-sheet-medium (macro) 351

with-text-face (macro) 81

with-text-family (macro) 81

with-text-size (macro) 82

with-text-style (macro) 81

with-translation (macro) 72

write-token (function) 140

X

X resources 21

Y

+yellow+ (predefined color) 90
380 CLIM 2.2 User Guide

	CLIM 2 User Guide
	Contents
	1 Introduction and �notation 11
	1.1 Notation used in this manual 11
	1.2 Comments and suggestions 13
	1.3 Some CLIM terms 13
	1.4 Reporting bugs 14
	1.5 Patches 15

	2 Getting started with CLIM 17
	2.1 General information 17
	2.2 Window-manager-specific information 21
	2.3 X resources 21
	2.4 Some miscellaneous quirks and tricks 23

	3 Drawing graphics in CLIM 27
	3.1 Concepts of drawing graphics in CLIM 27
	3.1.1 The drawing plane 27
	3.1.2 Coordinates 28
	3.1.3 Sheets and Streams, and Mediums 29

	3.2 Examples of Using CLIM Drawing Functions 29
	3.3 CLIM drawing functions 30
	3.4 Medium-level drawing functions in CLIM 38
	3.5 Pixmaps in CLIM 40
	3.5.1 Example of Using CLIM Pixmaps 42

	3.6 General geometric objects and regions in CLIM 43
	3.6.1 Region predicates in CLIM 44
	3.6.2 Composition of CLIM regions 44
	3.6.3 CLIM point objects 46
	3.6.4 Polygons and polylines in CLIM 46
	3.6.5 Lines in CLIM 48
	3.6.6 Rectangles in CLIM 49
	3.6.7 Bounding Rectangles in CLIM 51
	3.6.8 Ellipses and Elliptical Arcs in CLIM 53

	4 The CLIM drawing �environment 57
	4.1 Introduction to CLIM drawing environments 57
	4.1.1 Components of CLIM Mediums 58

	4.2 Using CLIM drawing options 59
	4.2.1 Set of CLIM drawing options 60
	4.2.2 Using the :filled option to certain CLIM drawing functions 62

	4.3 CLIM line styles 62
	4.3.1 CLIM line style objects 62
	4.3.2 CLIM line style suboptions 63

	4.4 Transformations in CLIM 65
	4.4.1 The transformations used by CLIM 66
	4.4.2 CLIM transformation constructors 67
	4.4.3 Operations on CLIM transformations 68
	4.4.4 Composition of CLIM transformations 70
	4.4.5 Applying CLIM transformations 75

	5 Text styles in CLIM 77
	5.1 Concepts of CLIM text styles 77
	5.2 CLIM Text Style Objects 78
	5.3 CLIM Text Style Suboptions 78
	5.4 CLIM Text Style Functions 78

	6 Drawing in color in CLIM 83
	6.1 Concepts of drawing in color in CLIM 83
	6.1.1 CLIM color objects 83

	6.2 CLIM Operators for Drawing in Color 86
	6.2.1 Dynamic colors and layered colors 88

	6.3 Predefined color names in CLIM 90

	7 Drawing with designs in CLIM 93
	7.1 Concepts of Designs in CLIM 93
	7.2 Indirect Ink in CLIM 94
	7.3 Flipping Ink in CLIM 94
	7.4 Concepts of patterned designs in CLIM 95
	7.4.1 Operators for patterned designs in CLIM 95
	7.4.2 Reading patterns from X11 image files 98

	7.5 Concepts of compositing and translucent ink in CLIM 98
	7.5.1 Operators for Translucent Ink and Compositing in CLIM 100

	7.6 Complex Designs in CLIM 101
	7.7 Achieving different drawing effects in CLIM 102

	8 Presentation types in CLIM 105
	8.1 Concepts of CLIM presentation types 105
	8.1.1 Presentations 105
	8.1.2 Output with its semantics attached 106
	8.1.3 Input context 106
	8.1.4 Inheritance 106
	8.1.5 Presentation translators 106
	8.1.6 What the application programmer does 107

	8.2 How to specify a CLIM presentation type 107
	8.3 Using CLIM presentation types for output 108
	8.3.1 CLIM operators for presenting typed output 109
	8.3.2 Additional functions for operating on presentations in CLIM 111

	8.4 Using CLIM presentation types for input 112
	8.4.1 CLIM operators for accepting input 113

	8.5 Predefined presentation types in CLIM 116
	8.5.1 Basic presentation types in CLIM 116
	8.5.2 Numeric presentation types in CLIM 117
	8.5.3 Character and string presentation types in CLIM 117
	8.5.4 Pathname presentation type in CLIM 118
	8.5.5 One-of and some-of presentation types in CLIM 118
	8.5.6 Sequence presentation types in CLIM 120
	8.5.7 Meta presentation types in CLIM 121
	8.5.8 Compound presentation types in CLIM 122
	8.5.9 Lisp form presentation types in CLIM 122

	8.6 Defining a new presentation type in CLIM 123
	8.6.1 Concepts of defining a new presentation type in CLIM 123
	8.6.2 CLIM presentation type Inheritance 124
	8.6.3 Examples of defining a new CLIM presentation type 124
	8.6.4 Example of modelling courses at a university 124
	8.6.5 Examples of more complex presentation types 131
	8.6.6 CLIM operators for defining new presentation types 132
	8.6.7 Defining new presentation methods 134
	8.6.8 CLIM operators for defining presentation type abbreviations 135
	8.6.9 More about presentation methods in CLIM 136
	8.6.10 Utilities for clim:accept presentation methods 139
	8.6.11 clim:accept and the input editor 144
	8.6.12 Help facilities for clim:accept 146
	8.6.13 Using views with CLIM presentation types 147
	8.6.14 Functions that operate on CLIM presentation types 151

	8.7 Presentation translators in CLIM 152
	8.7.1 What controls sensitivity in CLIM? 153
	8.7.2 CLIM operators for defining presentation translators 154
	8.7.3 Applicability of CLIM presentation translators 161
	8.7.4 Input contexts in CLIM 162
	8.7.5 Nested presentations in CLIM 163
	8.7.6 Gestures in CLIM 163
	8.7.7 Operators for gestures in CLIM 165
	8.7.8 Events in CLIM 167
	8.7.9 Low level functions for CLIM presentation translators 169

	9 Defining application frames in CLIM 173
	9.1 Concepts of CLIM application frames 173
	9.2 Defining CLIM application frames 173
	9.2.1 Panes in CLIM 178
	9.2.2 Basic pane construction 179
	9.2.3 Using the :panes option to clim:define-application-frame 179
	9.2.4 CLIM stream panes 182
	9.2.5 Using the :layouts Option to clim:define-application-frame 184
	9.2.6 Examples of the :panes and :layouts options to �clim:defin�e-application- frame 190

	9.3 CLIM application frames vs. CLOS 193
	9.3.1 Initializing application frames 193
	9.3.2 Inheritance of application frames 194
	9.3.3 Accessing slots and components of CLIM application frames 196

	9.4 Running a CLIM application 196
	9.5 Examples of CLIM application frames 196
	9.5.1 Example of defining a CLIM application frame 196
	9.5.2 Example of constructing a function as part of running an application 198

	9.6 CLIM application frame accessors 198
	9.7 Operators for running CLIM applications 202

	10 Commands in CLIM 207
	10.1 Introduction to CLIM commands 207
	10.2 Defining commands the easy way 208
	10.2.1 Command names and command line names 208

	10.3 Command objects in CLIM 209
	10.4 CLIM Command Tables 213
	10.4.1 CLIM's predefined command tables 216
	10.4.2 Conditions relating to CLIM command tables 216

	10.5 Styles of interaction supported by CLIM 217
	10.5.1 CLIM's Command Menu Interaction Style 217
	10.5.2 Mouse interaction via presentation translators 221
	10.5.3 CLIM's command line interaction style 222
	10.5.4 CLIM's keystroke interaction style 223

	10.6 The CLIM Command Processor 226
	10.7 Command-related Presentation Types 228

	11 Formatted output in CLIM 231
	11.1 Formatted output in CLIM 231
	11.2 Concepts of CLIM table and graph formatting 231
	11.2.1 Formatting item lists in CLIM 231

	11.3 CLIM Operators for Table Formatting 232
	11.3.1 Examples of table formatting 235
	11.3.2 CLIM operators for item list formatting 236
	11.3.3 More examples of CLIM table formatting 238

	11.4 Formatting graphs in CLIM 242
	11.4.1 Examples of CLIM graph formatting 243
	11.4.2 CLIM operators for graph formatting 244

	11.5 Formatting text in CLIM 247
	11.6 Bordered output in CLIM 252

	12 Hardcopy streams in CLIM 255
	12.1 Function for doing PostScript output 255
	12.2 Examples of Doing PostScript Output 256

	13 Menus and dialogs in CLIM 257
	13.1 Concepts of menus and dialogs in CLIM 257
	13.2 Operators for menus in CLIM 257
	13.3 Operators for dealing with dialogs in CLIM 262
	13.4 Using an :accept-values pane in a CLIM application frame 266
	13.5 Examples of menus and dialogs in CLIM 267
	13.5.1 Example of using clim:accepting-values 267
	13.5.2 Example of using clim:accept-values-command-button 268
	13.5.3 Using :resynchronize-every-pass in clim:accepting-values 268
	13.5.4 Use of the third value from clim:accept in clim:accepting-values 269
	13.5.5 A simple spreadsheet that uses dialogs 270
	13.5.6 Examples of using clim:menu-choose 270
	13.5.7 Examples of using clim:menu-choose-from-drawer 272

	14 Incremental redisplay in CLIM 273
	14.1 Concepts of incremental redisplay in CLIM 273
	14.2 Using clim:updating-output 274
	14.3 CLIM Operators for Incremental Redisplay 275
	14.4 Example of incremental redisplay in CLIM 276

	15 Manipulating the pointer in CLIM 283
	15.1 Manipulating the pointer in CLIM 283
	15.2 High Level Operators for Tracking the Pointer in CLIM 285
	15.2.1 Examples of Higher Level Pointer-Tracking Facilities 289

	16 Using gadgets in CLIM 291
	16.1 Using gadgets in CLIM 291
	16.2 Basic gadget protocol in CLIM 291
	16.2.1 Basic gadgets 292
	16.2.2 Value gadgets 294
	16.2.3 Action gadgets 295
	16.2.4 Other gadget classes 295

	16.3 Abstract gadgets in CLIM 296

	17 The CLIM input editor 307
	17.1 Input editing and built-in keystroke commands in CLIM 307
	17.1.1 Activation and delimiter gestures 307
	17.1.2 Input editor commands 308

	17.2 Concepts of CLIM's input editor 310
	17.2.1 Detailed description of the input editor 311

	17.3 Functions for doing input editing 312
	17.4 The input editing protocol 313
	17.5 Examples of extending the input editor 315

	18 Output recording in CLIM 317
	18.1 Concepts of CLIM output recording 317
	18.1.1 Uses of output recording 317

	18.2 CLIM operators for output recording 318
	18.2.1 Examples of creating and replaying output records 320
	18.2.2 Output record database functions 320
	18.2.3 Output record change notification protocol 322
	18.2.4 Operations on output recording streams 323

	18.3 Standard output record classes 324

	19 Streams and windows in CLIM 327
	19.1 Extended stream input in CLIM 327
	19.1.1 Operators for extended stream input 327

	19.2 Extended stream output in CLIM 329
	19.3 Manipulating the cursor in CLIM 329
	19.3.1 Operators for manipulating the cursor 330
	19.3.2 Text measurement operations in CLIM 331

	19.4 Attracting attention, selecting a file, noting progress 333
	19.5 Window stream operations in CLIM 335
	19.5.1 Clearing and refreshing the drawing plane in CLIM 335
	19.5.2 The viewport and scrolling in CLIM 336
	19.5.3 Operators for creating CLIM window streams 338

	20 The Silica windowing substrate 341
	20.1 Overview of CLIM's windowing substrate 341
	20.1.1 Basic properties of sheets 342
	20.1.2 Basic sheet protocols 342

	20.2 Sheet geometry 343
	20.2.1 Sheet geometry functions 343

	20.3 Relationships between sheets 346
	20.3.1 Sheet relationship functions 346

	20.4 Sheet input protocol 348
	20.4.1 Input protocol functions 348

	20.5 Sheet output protocol 348
	20.5.1 Associating a medium with a sheet 351

	20.6 Repainting protocol 352
	20.6.1 Repaint protocol functions 352

	20.7 Ports, grafts, and mirrored sheets 352
	20.7.1 Ports 353
	20.7.2 Internal Interfaces for Native Coordinates 355

	21 Index 357

	Chapter 1 Introduction and �notation
	1.1 Notation used in this manual
	name1 [Function]
	name2 [Generic function]
	name3 [Variable]
	transform-rectangle* [Generic function]

	Packages
	Keyword arguments
	accept-from-string [Function]

	Type faces
	’ symbol means ‘evaluates to’
	Special notation for unimplemented features

	1.2 Comments and suggestions
	1.3 Some CLIM terms
	1.4 Reporting bugs
	Where to report bugs and send questions

	1.5 Patches
	The Allegro CL FAQ

	Chapter 2 Getting started with CLIM
	2.1 General information
	Features for CLIM
	Motif on Linux and FreeBSD
	Loading CLIM into a Lisp image built without CLIM
	The clim-user package
	Setting the server path
	The CLIM demos
	A simple example
	test-frame and *test-pane*
	Many CLIM operations need a context to work

	2.2 Window-manager-specific information
	Motif peculiarities

	2.3 X resources
	Application
	Widget
	Resource
	Wildcards
	Examples
	Reinitializing resources

	2.4 Some miscellaneous quirks and tricks
	Many CLIM macros turn bodies into closures
	Reading a password
	Getting a gc cursor
	Getting hyper and super keys
	Rectangles and bounding-rectangles are different

	Chapter 3 Drawing graphics in CLIM
	3.1 Concepts of drawing graphics in CLIM
	3.1.1 The drawing plane
	3.1.2 Coordinates
	3.1.3 Sheets and Streams, and Mediums

	3.2 Examples of Using CLIM Drawing Functions
	3.3 CLIM drawing functions
	draw-point [Function]
	draw-point* [Function]
	draw-points [Function]
	draw-points* [Function]
	draw-line [Function]
	draw-line* [Function]
	draw-lines [Function]
	draw-lines* [Function]
	draw-arrow [Function]
	draw-arrow* [Function]
	draw-polygon [Function]
	draw-polygon* [Function]
	draw-rectangle [Function]
	draw-rectangle* [Function]
	draw-rectangles [Function]
	draw-rectangles* [Function]
	draw-ellipse [Function]
	draw-ellipse* [Function]
	draw-circle [Function]
	draw-circle* [Function]
	draw-oval [Function]
	draw-oval* [Function]
	draw-bezier-curve [Function]
	draw-bezier-curve* [Function]
	draw-text [Function]
	draw-text* [Function]

	3.4 Medium-level drawing functions in CLIM
	medium-draw-point* [Generic function]
	medium-draw-points* [Generic function]
	medium-draw-line* [Generic function]
	medium-draw-lines* [Generic function]
	medium-draw-rectangle* [Generic function]
	medium-copy-area [Generic function]
	medium-draw-rectangles* [Generic function]
	medium-draw-polygon* [Generic function]
	medium-draw-ellipse* [Generic function]
	medium-draw-text* [Generic function]

	3.5 Pixmaps in CLIM
	copy-to-pixmap [Function]
	copy-from-pixmap [Function]
	draw-pixmap* [Function]
	draw-pixmap [Function]
	copy-area [Generic function]
	allocate-pixmap [Function]
	deallocate-pixmap [Function]
	pixmap-width [Generic function]
	pixmap-height [Generic function]
	pixmap-depth [Generic function]
	with-output-to-pixmap [Macro]

	3.5.1 Example of Using CLIM Pixmaps

	3.6 General geometric objects and regions in CLIM
	region [Class]
	point [Class]
	path [Class]
	area [Class]
	+everywhere+ [Constant]
	+nowhere+ [Constant]
	3.6.1 Region predicates in CLIM
	region-equal [Generic function]
	region-contains-region-p [Generic function]
	region-contains-position-p [Generic function]
	region-intersects-region-p [Generic function]

	3.6.2 Composition of CLIM regions
	region-union [Generic function]
	region-intersection [Generic function]
	region-difference [Generic function]
	region-set [Class]

	region-set-function [Generic function]
	region-set-regions [Generic function]
	map-over-region-set-regions [Generic function]

	3.6.3 CLIM point objects
	point [Class]
	standard-point [Class]
	make-point [Function]
	point-position [Generic function]
	point-x [Generic function]
	point-y [Generic function]

	3.6.4 Polygons and polylines in CLIM
	polyline [Class]
	polygon [Class]
	standard-polyline [Class]
	standard-polygon [Class]
	make-polygon [Function]
	make-polygon* [Function]
	make-polyline [Function]
	make-polyline* [Function]
	polyline-closed [Generic function]
	polygon-points [Generic function]
	map-over-polygon-coordinates [Generic function]
	map-over-polygon-segments [Generic function]

	3.6.5 Lines in CLIM
	line [Class]
	standard-line [Class]
	make-line [Function]
	make-line* [Function]
	line-start-point [Generic function]
	line-end-point [Generic function]
	line-start-point* [Generic function]
	line-end-point* [Generic function]

	3.6.6 Rectangles in CLIM
	rectangle [Class]
	standard-rectangle [Class]
	make-rectangle [Function]
	make-rectangle* [Function]
	rectangle-min-point [Generic function]
	rectangle-max-point [Generic function]
	rectangle-edges* [Generic function]
	rectangle-min-x [Function]
	rectangle-min-y [Function]
	rectangle-max-x [Function]
	rectangle-max-y [Function]
	rectangle-width [Function]
	rectangle-height [Function]
	rectangle-size [Function]

	3.6.7 Bounding Rectangles in CLIM
	bounding-rectangle [Class]
	standard-bounding-rectangle [Class]
	make-bounding-rectangle [Function]
	bounding-rectangle* [Generic function]
	bounding-rectangle [Generic function]
	bounding-rectangle-min-x [Function]
	bounding-rectangle-left [Function]
	bounding-rectangle-min-y [Function]
	bounding-rectangle-top [Function]
	bounding-rectangle-max-x [Function]
	bounding-rectangle-right [Function]
	bounding-rectangle-max-y [Function]
	bounding-rectangle-bottom [Function]
	bounding-rectangle-size [Function]
	bounding-rectangle-width [Function]
	bounding-rectangle-height [Function]

	3.6.8 Ellipses and Elliptical Arcs in CLIM
	ellipse [Class]
	elliptical-arc [Class]
	standard-ellipse [Class]
	standard-elliptical-arc [Class]
	make-ellipse [Function]
	make-ellipse* [Function]
	make-elliptical-arc [Function]
	make-elliptical-arc* [Function]
	ellipse-center-point [Generic function]
	ellipse-center-point* [Generic function]
	ellipse-radii [Generic function]
	ellipse-start-angle [Generic function]
	ellipse-end-angle [Generic function]

	Chapter 4 The CLIM drawing �environment
	4.1 Introduction to CLIM drawing environments
	4.1.1 Components of CLIM Mediums
	medium-foreground [Generic function]
	medium-background [Generic function]
	medium-ink [Generic function]
	medium-transformation [Generic function]
	medium-clipping-region [Generic function]
	medium-line-style [Generic function]
	medium-text-style [Generic function]
	medium-default-text-style [Generic function]

	4.2 Using CLIM drawing options
	with-drawing-options [Macro]
	invoke-with-drawing-options [Generic function]
	4.2.1 Set of CLIM drawing options
	:clipping-region [Drawing option]
	:ink [Drawing option]
	:transformation [Drawing option]
	:text-style [Drawing option]
	:line-style [Drawing option]

	4.2.2 Using the :filled option to certain CLIM drawing functions

	4.3 CLIM line styles
	4.3.1 CLIM line style objects
	make-line-style [Function]
	line-style-thickness [Generic function]
	line-style-joint-shape [Generic function]
	line-style-cap-shape [Generic function]
	line-style-dashes [Generic function]
	line-style-unit [Generic function]

	4.3.2 CLIM line style suboptions
	:line-unit [Drawing option]
	:line-thickness [Drawing option]
	:line-dashes [Drawing option]
	:line-joint-shape [Drawing option]
	:line-cap-shape [Drawing option]
	make-contrasting-dash-patterns [Function]
	contrasting-dash-patterns-limit [Function]

	4.4 Transformations in CLIM
	4.4.1 The transformations used by CLIM
	4.4.2 CLIM transformation constructors
	make-translation-transformation [Function]
	make-rotation-transformation [Function]
	make-rotation-transformation* [Function]
	make-scaling-transformation [Function]
	make-scaling-transformation* [Function]
	make-reflection-transformation [Function]
	make-reflection-transformation* [Function]
	make-transformation [Function]
	make-3-point-transformation [Function]
	make-3-point-transformation* [Function]

	4.4.3 Operations on CLIM transformations
	transformation [Class]
	+identity-transformation+ [Constant]
	transformation-equal [Generic function]
	identity-transformation-p [Generic function]
	translation-transformation-p [Generic function]
	invertible-transformation-p [Generic function]
	reflection-transformation-p [Generic function]
	rigid-transformation-p [Generic function]
	even-scaling-transformation-p [Generic function]
	scaling-transformation-p [Generic function]
	rectilinear-transformation-p [Generic function]

	4.4.4 Composition of CLIM transformations
	compose-transformations [Generic function]
	compose-translation-with-transformation [Generic function]
	compose-scaling-with-transformation [Generic function]
	compose-rotation-with-transformation [Generic function]
	compose-transformation-with-translation [Generic function]
	compose-transformation-with-scaling [Generic function]
	compose-transformation-with-rotation [Generic function]
	invert-transformation [Generic function]
	with-rotation [Macro]
	with-translation [Macro]
	with-scaling [Macro]
	with-room-for-graphics [Macro]
	with-local-coordinates [Macro]
	with-first-quadrant-coordinates [Macro]

	4.4.5 Applying CLIM transformations
	transform-region [Generic function]
	untransform-region [Generic function]
	transform-position [Generic function]
	untransform-position [Generic function]
	transform-distance [Generic function]
	untransform-distance [Generic function]
	transform-rectangle* [Generic function]
	untransform-rectangle* [Generic function]

	Chapter 5 Text styles in CLIM
	5.1 Concepts of CLIM text styles
	default-text-style [Variable]

	5.2 CLIM Text Style Objects
	5.3 CLIM Text Style Suboptions
	:text-family [Text style option]
	:text-face [Text style option]
	:text-size [Text style option]

	5.4 CLIM Text Style Functions
	parse-text-style [Generic function]
	merge-text-styles [Generic function]
	text-style-components [Generic function]
	text-style-family [Generic function]
	text-style-face [Generic function]
	text-style-size [Generic function]
	text-style-ascent [Generic function]
	text-style-descent [Generic function]
	text-style-height [Generic function]
	text-style-width [Generic function]
	text-style-fixed-width-p [Generic function]
	text-style-mapping [Generic function]
	(setf text-style-mapping) [Generic function]
	make-text-style [Function]
	with-text-style [Macro]
	with-text-face [Macro]
	with-text-family [Macro]
	with-text-size [Macro]

	Chapter 6 Drawing in color in CLIM
	6.1 Concepts of drawing in color in CLIM
	6.1.1 CLIM color objects
	Rendering of colors
	Palettes
	palette [Class]
	palettep [Function]
	palette-color-p [Generic function]
	palette-mutable-p [Generic function]
	make-palette [Generic function]
	frame-palette [Generic function]
	frame-manager-palette [Generic function]
	palette-full-palette [Generic function]
	palette-full-color [Generic function]
	use-closest-color [Variable]
	find-closest-matching-color [Generic function]
	cadd-colors-to-palette [Generic function]
	remove-colors-from-palette [Generic function]
	port-default-palette [Generic function]

	6.2 CLIM Operators for Drawing in Color
	make-ihs-color [Function]
	make-rgb-color [Function]
	make-gray-color [Function]
	color-ihs [Generic function]
	color-rgb [Generic function]
	make-contrasting-inks [Function]
	contrasting-inks-limit [Function]
	Device colors
	clim-utils:device-color [Class]
	clim-utils:device-color-pixel [Generic function]
	clim-utils:device-color-palette [Generic function]
	clim-utils:device-color-color [Generic function]
	clim-utils:make-device-color [Generic function]

	Color conversion functionality
	clim-utils:convert-rgb-to-ihs [Function]
	clim-utils:convert-ihs-to-rgb [Function]

	6.2.1 Dynamic colors and layered colors
	Dynamic colors
	make-dynamic-color [Generic function]
	dynamic-color-color [Generic function]
	(setf dynamic-color-color) [Generic function]
	recolor-dynamic-color [Generic function]
	with-delayed-recoloring [Macro]

	Layered colors
	make-layered-color-set [Function]
	layered-color [Generic function]

	6.3 Predefined color names in CLIM
	find-named-color [Function]

	Chapter 7 Drawing with designs in CLIM
	7.1 Concepts of Designs in CLIM
	7.2 Indirect Ink in CLIM
	+foreground-ink+ [Constant]
	+background-ink+ [Constant]

	7.3 Flipping Ink in CLIM
	make-flipping-ink [Function]
	+flipping-ink+ [Constant]

	7.4 Concepts of patterned designs in CLIM
	Patterns and Stencils
	Tiling
	Transforming Designs
	7.4.1 Operators for patterned designs in CLIM
	make-pattern [Function]
	pattern-width [Function]
	pattern-height [Function]
	pattern-array [Generic function]
	pattern-designs [Generic function]
	make-pattern-from-pixmap [Generic function]
	make-stencil [Function]
	make-rectangular-tile [Function]
	draw-pattern* [Function]

	7.4.2 Reading patterns from X11 image files
	read-bitmap-file [Function]
	make-pattern-from-bitmap-file [Function]

	7.5 Concepts of compositing and translucent ink in CLIM
	Controlling Opacity
	Color Blending
	Compositing
	7.5.1 Operators for Translucent Ink and Compositing in CLIM
	make-opacity [Function]
	opacity-value [Generic function]
	+transparent-ink+ [Constant]

	compose-over [Generic function]
	compose-in [Generic function]
	compose-out [Generic function]

	7.6 Complex Designs in CLIM
	draw-design [Generic function]
	make-design-from-output-record [Function]

	7.7 Achieving different drawing effects in CLIM

	Chapter 8 Presentation types in CLIM
	8.1 Concepts of CLIM presentation types
	8.1.1 Presentations
	8.1.2 Output with its semantics attached
	8.1.3 Input context
	8.1.4 Inheritance
	8.1.5 Presentation translators
	8.1.6 What the application programmer does

	8.2 How to specify a CLIM presentation type
	8.3 Using CLIM presentation types for output
	8.3.1 CLIM operators for presenting typed output
	with-output-as-presentation [Macro]
	present [Function]
	present-to-string [Function]

	8.3.2 Additional functions for operating on presentations in CLIM
	presentation [Class]
	standard-presentation [Class]
	presentationp [Function]
	presentation-object [Generic function]
	presentation-type [Generic function]

	8.4 Using CLIM presentation types for input
	Examples:
	8.4.1 CLIM operators for accepting input
	input-context [Variable]
	input-context-type [Function]
	with-input-context [Macro]

	accept [Function]
	accept-from-string [Function]

	8.5 Predefined presentation types in CLIM
	8.5.1 Basic presentation types in CLIM
	t [Presentation type]
	null [Presentation type]
	boolean [Presentation type]
	symbol [Presentation type]
	keyword [Presentation type]

	8.5.2 Numeric presentation types in CLIM
	number [Presentation type]
	complex [Presentation type]
	real [Presentation type]
	rational [Presentation type]
	ratio [Presentation type]
	integer [Presentation type]
	float [Presentation type]

	8.5.3 Character and string presentation types in CLIM
	character [Presentation type]
	string [Presentation type]

	8.5.4 Pathname presentation type in CLIM
	pathname [Presentation type]

	8.5.5 One-of and some-of presentation types in CLIM
	completion [Presentation type]
	member-sequence [Presentation type abbreviation]
	member-alist [Presentation type abbreviation]
	subset-completion [Presentation type]
	subset [Presentation type abbreviation]
	subset-sequence [Presentation type abbreviation]
	subset-alist [Presentation type abbreviation]

	8.5.6 Sequence presentation types in CLIM
	sequence [Presentation type]
	sequence-enumerated [Presentation type]

	8.5.7 Meta presentation types in CLIM
	or [Presentation type]
	and [Presentation type]

	8.5.8 Compound presentation types in CLIM
	token-or-type [Presentation type abbreviation]
	null-or-type [Presentation type abbreviation]
	type-or-string [Presentation type abbreviation]

	8.5.9 Lisp form presentation types in CLIM
	expression [Presentation type]
	form [Presentation type]

	8.6 Defining a new presentation type in CLIM
	8.6.1 Concepts of defining a new presentation type in CLIM
	1. Use the define-presentation-type macro.
	2. Define CLIM presentation methods.

	8.6.2 CLIM presentation type Inheritance
	8.6.3 Examples of defining a new CLIM presentation type
	8.6.4 Example of modelling courses at a university
	8.6.5 Examples of more complex presentation types
	8.6.6 CLIM operators for defining new presentation types
	define-presentation-type [Macro]
	define-presentation-method [Macro]

	8.6.7 Defining new presentation methods
	define-presentation-generic-function [Macro]
	define-default-presentation-method [Macro]
	funcall-presentation-generic-function [Macro]
	apply-presentation-generic-function [Macro]

	8.6.8 CLIM operators for defining presentation type abbreviations
	define-presentation-type-abbreviation [Macro]
	expand-presentation-type-abbreviation [Function]
	expand-presentation-type-abbreviation-1 [Function]
	make-presentation-type-specifier [Function]

	8.6.9 More about presentation methods in CLIM
	present [Presentation method]
	accept [Presentation method]
	describe-presentation-type [Presentation method]
	default-describe-presentation-type [Function]
	presentation-typep [Presentation method]
	presentation-subtypep [Presentation method]
	accept-present-default [Presentation method]
	presentation-refined-position-test [Presentation method]
	highlight-presentation [Presentation method]
	presentation-type-specifier-p [Presentation method]

	8.6.10 Utilities for clim:accept presentation methods
	read-token [Function]
	write-token [Function]
	simple-parse-error [Function]
	input-not-of-required-type [Function]
	complete-input [Function]
	complete-from-generator [Function]
	complete-from-possibilities [Function]
	completing-from-suggestions [Macro]

	suggest [Function]
	completion-gestures [Variable]
	possibilities-gestures [Variable]
	help-gestures [Variable]

	8.6.11 clim:accept and the input editor
	replace-input [Generic function]
	presentation-replace-input [Generic function]
	with-activation-gestures [Macro]
	with-delimiter-gestures [Macro]

	standard-activation-gestures [Variable]
	activation-gestures [Variable]
	activation-gesture-p [Function]

	delimiter-gestures [Variable]
	delimiter-gesture-p [Function]

	8.6.12 Help facilities for clim:accept
	with-accept-help [Macro]

	8.6.13 Using views with CLIM presentation types
	stream-default-view [Generic function]
	frame-manager-dialog-view [Generic function]
	textual-view [Class]
	textual-menu-view [Class]
	textual-dialog-view [Class]
	+textual-view+ [Constant]
	+textual-menu-view+ [Constant]
	+textual-dialog-view+ [Constant]
	gadget-view [Class]
	gadget-menu-view [Class]
	gadget-dialog-view [Class]

	+gadget-view+ [Constant]
	+gadget-menu-view+ [Constant]
	+gadget-dialog-view+ [Constant]

	8.6.14 Functions that operate on CLIM presentation types
	describe-presentation-type [Function]
	presentation-typep [Function]
	presentation-type-of [Function]
	presentation-subtypep [Function]
	with-presentation-type-decoded [Macro]
	with-presentation-type-options [Macro]
	with-presentation-type-parameters [Macro]

	8.7 Presentation translators in CLIM
	8.7.1 What controls sensitivity in CLIM?
	8.7.2 CLIM operators for defining presentation translators
	define-presentation-translator [Macro]
	Determining the priority of translators
	1. Translators with a higher high-order priority precede translators with a lower high-order prio...
	2. Translators with a more specific from-type precede translators with a less specific from- type.
	3. Translators with a higher low-order priority precede translators with a lower low-order priori...
	4. Translators from the current command table precede translators inherited from superior command...

	Examples of presentation translators
	define-presentation-to-command-translator [Macro]

	Examples of Presentation to Command Translators
	define-presentation-action [Macro]

	Defining a Presentation Action
	define-drag-and-drop-translator [Macro]

	Examples of Drag and Drop Translators
	blank-area [Presentation type]
	null-presentation [Constant]

	Defining a Presentation Translator from the Blank Area

	8.7.3 Applicability of CLIM presentation translators
	1. The presentation's type is presentation-subtypep of the translator's from-type, ignoring type ...
	2. The translator's to-type is presentation-subtypep of the input context type, ignoring type par...
	3. The translator's gesture either is t, or is the same as the gesture that the user could perfor...
	4. The presentation's object is presentation-typep of the translator's from-type, if the from-typ...
	5. The translator's tester returned a non-nil value. If there is no tester, the translator behave...
	6. If there are parameters in the input context type and the :tester-definitive option is not t i...

	8.7.4 Input contexts in CLIM
	Nested input contexts in CLIM

	8.7.5 Nested presentations in CLIM
	8.7.6 Gestures in CLIM
	Pointer gestures
	Keyboard gestures

	8.7.7 Operators for gestures in CLIM
	add-gesture-name [Function]
	delete-gesture-name [Function]
	define-gesture-name [Macro]

	make-modifier-state [Function]
	event-matches-gesture-name-p [Function]
	modifier-state-matches-gesture-name-p [Function]

	8.7.8 Events in CLIM
	event [Class]
	eventp [Function]
	event-timestamp [Generic function]
	event-type [Generic function]
	device-event [Class]

	event-sheet [Generic function]
	event-modifier-state [Generic function]
	keyboard-event [Class]

	keyboard-event-key-name [Generic function]
	keyboard-event-character [Generic function]
	key-press-event [Class]
	key-release-event [Class]
	pointer-event [Class]

	pointer-event-x [Generic function]
	pointer-event-y [Generic function]
	pointer-button-event [Class]

	pointer-event-button [Generic function]
	pointer-button-press-event [Class]
	pointer-button-release-event [Class]
	pointer-motion-event [Class]
	pointer-boundary-event [Class]

	pointer-boundary-event-kind [Generic function]
	pointer-enter-event [Class]
	pointer-exit-event [Class]

	8.7.9 Low level functions for CLIM presentation translators
	find-presentation-translators [Function]
	find-applicable-translators [Function]
	presentation-matches-context-type [Function]
	test-presentation-translator [Function]
	call-presentation-translator [Function]
	document-presentation-translator [Function]
	call-presentation-menu [Function]
	find-innermost-applicable-presentation [Function]
	throw-highlighted-presentation [Function]
	highlight-applicable-presentation [Function]
	set-highlighted-presentation [Function]
	unhighlight-highlighted-presentation [Function]

	Chapter 9 Defining application frames in CLIM
	9.1 Concepts of CLIM application frames
	9.2 Defining CLIM application frames
	define-application-frame [Macro]
	Some examples
	More application-frame functions and utilities
	standard-application-frame [Class]
	application-frame-p [Function]
	make-application-frame [Function]
	find-application-frame [Function]

	9.2.1 Panes in CLIM
	9.2.2 Basic pane construction
	9.2.3 Using the :panes option to clim:define-application-frame
	9.2.4 CLIM stream panes
	pane [Class]
	panep [Function]
	basic-pane [Class]

	pane-frame [Generic function]
	clim-stream-pane [Class]
	interactor-pane [Class]
	application-pane [Class]
	command-menu-pane [Class]
	title-pane [Class]
	pointer-documentation-pane [Class]

	Making CLIM Stream Panes
	make-clim-stream-pane [Function]
	make-clim-interactor-pane [Function]
	make-clim-application-pane [Function]

	9.2.5 Using the :layouts Option to clim:define-application-frame
	The space requirement
	make-space-requirement [Function]
	space-requirement-width [Generic function]
	space-requirement-min-width [Generic function]
	space-requirement-max-width [Generic function]
	space-requirement-height [Generic function]
	space-requirement-min-height [Generic function]
	space-requirement-max-height [Generic function]
	space-requirement-components [Generic function]
	space-requirement-combine [Function]
	space-requirement+ [Function]
	space-requirement+* [Function]
	compose-space [Generic function]
	allocate-space [Generic function]
	change-space-requirements [Generic function]

	The layout
	+fill+ [Constant]
	horizontally [Macro]
	vertically [Macro]
	tabling [Macro]
	outlining [Macro]
	spacing [Macro]
	labelling [Macro]
	scrolling [Macro]
	pane-viewport [Generic function]
	pane-viewport-region [Generic function]
	scroll-extent [Generic function]
	scroll-bar-size [Generic function]
	note-viewport-position-changed [Generic function]

	9.2.6 Examples of the :panes and :layouts options to �clim:defin�e- application-frame

	Mini-CAD
	9.3 CLIM application frames vs. CLOS
	9.3.1 Initializing application frames
	9.3.2 Inheritance of application frames
	9.3.3 Accessing slots and components of CLIM application frames

	9.4 Running a CLIM application
	9.5 Examples of CLIM application frames
	9.5.1 Example of defining a CLIM application frame
	9.5.2 Example of constructing a function as part of running an application

	9.6 CLIM application frame accessors
	application-frame [Variable]
	with-application-frame [Macro]
	map-over-frames [Function]
	destroy-frame [Generic function]
	raise-frame [Generic function]
	bury-frame [Generic function]
	position-sheet-carefully [Function]
	frame-name [Generic function]
	frame-pretty-name [Generic function]
	frame-state [Generic function]
	frame-standard-input [Generic function]
	frame-standard-output [Generic function]
	frame-error-output [Generic function]
	frame-query-io [Generic function]

	pointer-documentation-output [Variable]
	frame-pointer-documentation-output [Generic function]
	frame-current-layout [Generic function]
	frame-current-panes [Generic function]
	frame-panes [Generic function]
	get-frame-pane [Generic function]
	find-pane-named [Generic function]
	frame-command-table [Generic function]
	frame-find-innermost-applicable-presentation [Generic function]
	frame-input-context-button-press-handler [Generic function]
	frame-maintain-presentation-histories [Generic function]
	frame-top-level-sheet [Generic function]
	frame-document-highlighted-presentation [Generic function]

	Frame iconification/deiconification
	note-frame-deiconified [Generic function]
	note-frame-iconified [Generic function]

	9.7 Operators for running CLIM applications
	run-frame-top-level [Generic function]
	default-frame-top-level [Generic function]
	frame-exit [Generic function]
	frame-exit-frame [Generic function]
	redisplay-frame-pane [Generic function]
	redisplay-frame-panes [Generic function]
	frame-replay [Generic function]
	frame-current-layout [Generic function]
	(setf frame-current-layout) [Generic function]
	frame-all-layouts [Generic function]

	Chapter 10 Commands in CLIM
	10.1 Introduction to CLIM commands
	10.2 Defining commands the easy way
	10.2.1 Command names and command line names

	10.3 Command objects in CLIM
	command-name [Function]
	command-arguments [Function]
	partial-command-p [Function]
	define-command [Macro]

	command-name-from-symbol [Function]

	10.4 CLIM Command Tables
	command-table [Class]
	command-table-name [Generic function]
	command-table-inherit-from [Generic function]
	find-command-table [Function]
	define-command-table [Macro]

	make-command-table [Function]
	do-command-table-inheritance [Macro]

	add-command-to-command-table [Function]
	remove-command-from-command-table [Function]
	command-present-in-command-table-p [Function]
	command-accessible-in-command-table-p [Function]
	map-over-command-table-commands [Function]
	10.4.1 CLIM's predefined command tables
	global-command-table [Command table]
	user-command-table [Command table]

	10.4.2 Conditions relating to CLIM command tables

	10.5 Styles of interaction supported by CLIM
	10.5.1 CLIM's Command Menu Interaction Style
	display-command-table-menu [Function]
	display-command-menu [Function]
	menu-choose-command-from-command-table [Function]
	add-menu-item-to-command-table [Function]
	remove-menu-item-from-command-table [Function]
	map-over-command-table-menu-items [Function]
	find-menu-item [Function]
	command-menu-item-type [Function]
	command-menu-item-value [Function]
	command-menu-item-options [Function]

	10.5.2 Mouse interaction via presentation translators
	10.5.3 CLIM's command line interaction style
	find-command-from-command-line-name [Function]
	command-line-name-for-command [Function]
	map-over-command-table-names [Function]

	10.5.4 CLIM's keystroke interaction style
	add-keystroke-to-command-table [Function]
	remove-keystroke-from-command-table [Function]
	map-over-command-table-keystrokes [Function]
	find-keystroke-item [Function]
	lookup-keystroke-item [Function]
	lookup-keystroke-command-item [Function]
	with-command-table-keystrokes [Macro]

	read-command-using-keystrokes [Function]

	10.6 The CLIM Command Processor
	read-command [Function]
	read-frame-command [Generic function]
	execute-frame-command [Generic function]
	command-enabled [Generic function]
	unsupplied-argument-marker [Variable]
	numeric-argument-marker [Variable]
	command-dispatchers [Variable]

	10.7 Command-related Presentation Types
	command [Presentation type]
	command-name [Presentation type]
	command-or-form [Presentation type]

	Chapter 11 Formatted output in CLIM
	11.1 Formatted output in CLIM
	11.2 Concepts of CLIM table and graph formatting
	11.2.1 Formatting item lists in CLIM

	11.3 CLIM Operators for Table Formatting
	formatting-table [Macro]
	formatting-row [Macro]
	formatting-column [Macro]
	formatting-cell [Macro]
	11.3.1 Examples of table formatting
	11.3.2 CLIM operators for item list formatting
	formatting-item-list [Macro]
	format-items [Function]

	11.3.3 More examples of CLIM table formatting
	Formatting a table from a list
	Formatting a table representing a calendar month
	Formatting a table with regular graphic elements
	Formatting a table with irregular graphics in the cells
	Formatting a table of a sequence of items: clim:formatting-item-list

	11.4 Formatting graphs in CLIM
	11.4.1 Examples of CLIM graph formatting
	11.4.2 CLIM operators for graph formatting
	format-graph-from-roots [Function]
	format-graph-from-root [Function]
	Some notes on graphing

	11.5 Formatting text in CLIM
	format-textual-list [Function]
	filling-output [Macro]

	indenting-output [Function]
	with-aligned-prompts [Macro]

	11.6 Bordered output in CLIM
	surrounding-output-with-border [Macro]
	define-border-type [Macro]

	Chapter 12 Hardcopy streams in CLIM
	12.1 Function for doing PostScript output
	with-output-to-postscript-stream [Macro]
	new-page [Function]

	12.2 Examples of Doing PostScript Output

	Chapter 13 Menus and dialogs in CLIM
	13.1 Concepts of menus and dialogs in CLIM
	13.2 Operators for menus in CLIM
	menu-choose [Function]
	menu-choose-from-drawer [Function]
	draw-standard-menu [Function]
	print-menu-item [Function]
	with-menu [Macro]

	13.3 Operators for dealing with dialogs in CLIM
	accepting-values [Macro]
	accept-values-command-button [Macro]

	13.4 Using an :accept-values pane in a CLIM application frame
	accept-values-pane [Command table]
	accept-values-pane-displayer [Function]

	13.5 Examples of menus and dialogs in CLIM
	13.5.1 Example of using clim:accepting-values
	13.5.2 Example of using clim:accept-values-command-button
	13.5.3 Using :resynchronize-every-pass in clim:accepting-values
	13.5.4 Use of the third value from clim:accept in clim:accepting-values
	13.5.5 A simple spreadsheet that uses dialogs
	13.5.6 Examples of using clim:menu-choose
	13.5.7 Examples of using clim:menu-choose-from-drawer

	Chapter 14 Incremental redisplay in CLIM
	14.1 Concepts of incremental redisplay in CLIM
	14.2 Using clim:updating-output
	14.3 CLIM Operators for Incremental Redisplay
	updating-output [Macro]
	redisplay [Function]
	redisplay-output-record [Generic function]

	14.4 Example of incremental redisplay in CLIM

	Chapter 15 Manipulating the pointer in CLIM
	15.1 Manipulating the pointer in CLIM
	port-pointer [Generic function]
	port-modifier-state [Generic function]
	pointer-button-state [Generic function]
	pointer-sheet [Generic function]
	pointer-position [Generic function]
	pointer-set-position [Generic function]
	pointer-native-position [Generic function]
	pointer-set-native-position [Generic function]
	pointer-cursor [Generic function]
	stream-pointer-position [Generic function]
	stream-set-pointer-position [Generic function]
	sheet-pointer-cursor [Generic function]

	15.2 High Level Operators for Tracking the Pointer in CLIM
	tracking-pointer [Macro]
	drag-output-record [Function]
	dragging-output [Macro]

	pointer-place-rubber-band-line* [Function]
	pointer-input-rectangle* [Function]
	pointer-input-rectangle [Function]
	15.2.1 Examples of Higher Level Pointer-Tracking Facilities

	Chapter 16 Using gadgets in CLIM
	16.1 Using gadgets in CLIM
	16.2 Basic gadget protocol in CLIM
	16.2.1 Basic gadgets
	gadget [Class]
	basic-gadget [Class]
	gadgetp [Function]
	gadget-id [Generic function]
	gadget-client [Generic function]
	armed-callback [Generic function]
	disarmed-callback [Generic function]
	activate-gadget [Generic function]
	deactivate-gadget [Generic function]
	gadget-active-p [Generic function]
	note-gadget-activated [Generic function]
	note-gadget-deactivated [Generic function]

	16.2.2 Value gadgets
	value-gadget [Class]
	gadget-value [Generic function]
	value-changed-callback [Generic function]
	drag-callback [Generic function]

	16.2.3 Action gadgets
	action-gadget [Class]
	activate-callback [Generic function]

	16.2.4 Other gadget classes
	oriented-gadget-mixin [Class]
	gadget-orientation [Generic function]
	row-column-gadget-mixin [Class]

	gadget-columns [Generic function]
	gadget-rows [Generic function]
	labelled-gadget-mixin [Class]

	gadget-label [Generic function]
	range-gadget-mixin [Class]

	gadget-min-value [Generic function]
	gadget-max-value [Generic function]

	16.3 Abstract gadgets in CLIM
	make-pane [Function]
	push-button [Class]
	push-button-view [Class]
	+push-button-view+ [Constant]

	push-button-show-as-default [Generic function]
	toggle-button [Class]
	radio-box [Class]
	check-box [Class]
	with-radio-box [Macro]
	list-pane [Class]
	option-pane [Class]
	scroll-bar [Class]
	slider [Class]
	menu-bar [Class]
	text-field [Class]
	text-editor [Class]

	gadget-current-selection [Function]
	with-output-as-gadget [Macro]

	A note about unmirrored application panes

	Chapter 17 The CLIM input editor
	17.1 Input editing and built-in keystroke commands in CLIM
	17.1.1 Activation and delimiter gestures
	Activation gestures
	Delimiter gestures
	Abort gestures
	Completion gestures
	Command processor gestures

	17.1.2 Input editor commands
	add-input-editor-command [Function]

	17.2 Concepts of CLIM's input editor
	17.2.1 Detailed description of the input editor

	17.3 Functions for doing input editing
	with-input-editing [Macro]
	with-input-editor-typeout [Macro]
	input-editor-format [Function]

	17.4 The input editing protocol
	input-editing-stream-p [Function]
	stream-insertion-pointer [Generic function]
	(setf stream-insertion-pointer) [Generic function]
	stream-scan-pointer [Generic function]
	(setf stream-scan-pointer) [Generic function]
	stream-rescanning-p [Generic function]
	reset-scan-pointer [Generic function]
	immediate-rescan [Generic function]
	queue-rescan [Generic function]
	rescan-if-necessary [Generic function]
	erase-input-buffer [Generic function]
	redraw-input-buffer [Generic function]

	17.5 Examples of extending the input editor

	Chapter 18 Output recording in CLIM
	18.1 Concepts of CLIM output recording
	18.1.1 Uses of output recording

	18.2 CLIM operators for output recording
	output-record [Class]
	output-record-p [Function]
	displayed-output-record [Class]

	displayed-output-record-p [Function]
	with-new-output-record [Macro]

	invoke-with-new-output-record [Generic function]
	with-output-to-output-record [Macro]
	with-output-recording-options [Macro]

	replay [Function]
	replay-output-record [Generic function]
	18.2.1 Examples of creating and replaying output records
	18.2.2 Output record database functions
	output-record-parent [Generic function]
	output-record-children [Generic function]
	output-record-count [Generic function]
	add-output-record [Generic function]
	delete-output-record [Generic function]
	erase-output-record [Generic function]
	clear-output-record [Generic function]
	map-over-output-records [Function]
	map-over-output-records-containing-position [Generic function]
	map-over-output-records-overlapping-region [Generic function]

	18.2.3 Output record change notification protocol
	recompute-extent-for-new-child [Generic function]
	recompute-extent-for-changed-child [Generic function]
	tree-recompute-extent [Generic function]

	18.2.4 Operations on output recording streams
	output-recording-stream-p [Function]
	stream-output-history [Generic function]
	stream-current-output-record [Generic function]
	stream-replay [Generic function]
	stream-drawing-p [Generic function]
	stream-recording-p [Generic function]
	copy-textual-output-history [Function]
	stream-add-output-record [Generic function]

	18.3 Standard output record classes
	standard-sequence-output-record [Class]
	standard-sequence-output-history [Class]
	standard-tree-output-record [Class]
	standard-tree-output-history [Class]
	r-tree-output-history [Class]

	Chapter 19 Streams and windows in CLIM
	19.1 Extended stream input in CLIM
	19.1.1 Operators for extended stream input
	extended-input-stream-p [Generic function]
	read-gesture [Function]
	unread-gesture [Function]
	stream-input-wait [Generic function]
	abort-gestures [Variable]
	abort-gesture-event [Generic function]

	accelerator-gestures [Variable]
	accelerator-gesture [Class]
	accelerator-gesture-event [Generic function]
	accelerator-gesture-numeric-argument [Generic function]

	19.2 Extended stream output in CLIM
	extended-output-stream-p [Generic function]

	19.3 Manipulating the cursor in CLIM
	19.3.1 Operators for manipulating the cursor
	stream-cursor-position [Generic function]
	stream-set-cursor-position [Generic function]
	stream-increment-cursor-position [Generic function]
	stream-text-cursor [Generic function]
	cursor-position [Generic function]
	cursor-set-position [Generic function]
	cursor-sheet [Generic function]
	cursor-active [Generic function]
	cursor-state [Generic function]
	cursor-focus [Generic function]
	cursor-visibility [Generic function]

	19.3.2 Text measurement operations in CLIM
	stream-character-width [Generic function]
	stream-line-height [Generic function]
	stream-vertical-spacing [Generic function]
	stream-baseline [Generic function]
	stream-text-margin [Generic function]
	text-size [Generic function]
	stream-string-width [Generic function]

	19.4 Attracting attention, selecting a file, noting progress
	Attracting attention
	beep [Function]
	notify-user [Generic function]

	Selecting a file
	select-file [Generic function]

	Noting progress
	current-progress-note [Variable]
	noting-progress [Macro]
	dotimes-noting-progress [Macro]
	dolist-noting-progress [Macro]
	note-progress [Function]

	19.5 Window stream operations in CLIM
	19.5.1 Clearing and refreshing the drawing plane in CLIM
	window-clear [Generic function]
	window-erase-viewport [Generic function]
	window-refresh [Generic function]

	19.5.2 The viewport and scrolling in CLIM
	window-viewport [Generic function]
	window-viewport-position [Generic function]
	note-viewport-position-changed [Generic function]
	window-set-viewport-position [Generic function]
	stream-end-of-line-action [Generic function]
	stream-end-of-page-action [Generic function]
	with-end-of-line-action [Macro]
	with-end-of-page-action [Macro]

	window-parent [Generic function]
	window-children [Generic function]
	stream-set-input-focus [Function]
	with-input-focus [Macro]

	window-expose [Generic function]
	window-stack-on-bottom [Generic function]
	window-stack-on-top [Generic function]
	window-visibility [Generic function]
	window-inside-edges [Generic function]
	window-inside-size [Generic function]

	19.5.3 Operators for creating CLIM window streams
	find-port [Function]
	find-frame-manager [Generic function]
	open-window-stream [Function]

	Chapter 20 The Silica windowing substrate
	20.1 Overview of CLIM's windowing substrate
	20.1.1 Basic properties of sheets
	sheet [Class]
	sheetp [Function]

	20.1.2 Basic sheet protocols

	20.2 Sheet geometry
	20.2.1 Sheet geometry functions
	sheet-transformation [Generic function]
	(setf sheet-transformation) [Generic function]
	sheet-region [Generic function]
	(setf sheet-region) [Generic function]
	note-sheet-region-changed [Generic function]
	note-sheet-transformation-changed [Generic function]
	move-sheet [Generic function]
	resize-sheet [Generic function]
	move-and-resize-sheet [Generic function]
	map-sheet-position-to-parent [Generic function]
	map-sheet-position-to-child [Generic function]
	map-sheet-rectangle*-to-parent [Generic function]
	map-sheet-rectangle*-to-child [Generic function]
	map-over-sheets-containing-position [Generic function]
	map-over-sheets-overlapping-region [Generic function]
	child-containing-position [Generic function]

	20.3 Relationships between sheets
	20.3.1 Sheet relationship functions
	sheet-parent [Generic function]
	sheet-children [Generic function]
	sheet-adopt-child [Generic function]
	sheet-disown-child [Generic function]
	raise-sheet [Generic function]
	bury-sheet [Generic function]
	reorder-sheets [Generic function]
	sheet-enabled-p [Generic function]
	(setf sheet-enabled-p) [Generic function]
	map-over-sheets [Generic function]

	20.4 Sheet input protocol
	20.4.1 Input protocol functions
	sheet-event-queue [Generic function]
	handle-event [Generic function]

	20.5 Sheet output protocol
	medium [Class]
	mediump [Function]
	medium-foreground [Generic function]
	(setf medium-foreground) [Generic function]
	medium-background [Generic function]
	(setf medium-background) [Generic function]
	medium-ink [Generic function]
	(setf medium-ink) [Generic function]
	medium-transformation [Generic function]
	(setf medium-transformation) [Generic function]
	medium-clipping-region [Generic function]
	(setf medium-clipping-region) [Generic function]
	medium-line-style [Generic function]
	(setf medium-line-style) [Generic function]
	medium-text-style [Generic function]
	(setf medium-text-style) [Generic function]
	medium-default-text-style [Generic function]
	(setf medium-default-text-style) [Generic function]
	medium-merged-text-style [Generic function]
	20.5.1 Associating a medium with a sheet
	with-sheet-medium [Macro]
	sheet-medium [Generic function]
	medium-sheet [Generic function]
	medium-drawable [Generic function]
	sheet-mirror [Generic function]

	20.6 Repainting protocol
	20.6.1 Repaint protocol functions
	queue-repaint [Generic function]
	handle-repaint [Generic function]
	repaint-sheet [Generic function]

	20.7 Ports, grafts, and mirrored sheets
	20.7.1 Ports
	find-port [Function]
	default-server-path [Variable]
	:motif [Server path]
	port [Server path]
	map-over-ports [Function]
	port-server-path [Generic function]
	port-name [Generic function]
	port-type [Generic function]
	restart-port [Generic function]
	destroy-port [Generic function]

	20.7.2 Internal Interfaces for Native Coordinates
	sheet-device-transformation [Generic function]
	sheet-device-region [Generic function]
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

